Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence

In this paper we present the two-dimensional relationships of the Lucas sequence, a sequence similar to the Fibonacci sequence, diering only in relation to their initial values. Given this, originating from the process of hybridization of linear and recursive sequences, we deal with the hybrid numbe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mangueira, Milena, Vieira, Renata, Alves, Francisco, Catarino, Paula
Formato: info:eu-repo/semantics/article
Lenguaje:por
Publicado: Universidad Antonio Nariño 2023
Materias:
Acceso en línea:https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1476
https://repositorio.uan.edu.co/handle/123456789/11561
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
_version_ 1826623652020355072
author Mangueira, Milena
Vieira, Renata
Alves, Francisco
Catarino, Paula
author_facet Mangueira, Milena
Vieira, Renata
Alves, Francisco
Catarino, Paula
author_sort Mangueira, Milena
collection DSpace
description In this paper we present the two-dimensional relationships of the Lucas sequence, a sequence similar to the Fibonacci sequence, diering only in relation to their initial values. Given this, originating from the process of hybridization of linear and recursive sequences, we deal with the hybrid numbers of Lucas. These two methods discussed in this research support the complexication area of this sequence by inserting imaginary units into its terms and its original recurrence. Finally, future work is suggested to continue this process, listing future applications in everyday life and in areas of modern physics.
format info:eu-repo/semantics/article
id repositorio.uan.edu.co-123456789-11561
institution Repositorio Digital UAN
language por
publishDate 2023
publisher Universidad Antonio Nariño
record_format dspace
spelling repositorio.uan.edu.co-123456789-115612025-03-13T22:58:27Z Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence Relações Bidimensionais e os Números Híbridos da Sequência de Lucas Mangueira, Milena Vieira, Renata Alves, Francisco Catarino, Paula Lucas sequence. Two-dimensional Re- lationship. Hybrid Numbers Sequência de Lucas. Relação Bidimensional. Números Híbridos In this paper we present the two-dimensional relationships of the Lucas sequence, a sequence similar to the Fibonacci sequence, diering only in relation to their initial values. Given this, originating from the process of hybridization of linear and recursive sequences, we deal with the hybrid numbers of Lucas. These two methods discussed in this research support the complexication area of this sequence by inserting imaginary units into its terms and its original recurrence. Finally, future work is suggested to continue this process, listing future applications in everyday life and in areas of modern physics. Neste artigo, apresentamos as relações bidimensionais da sequência de Lucas, uma sequência semelhante à sequência de Fibonacci, diferindo apenas em relação aos seus valores iniciais. Diante disso, oriundo do processo de hibridação de seqüências lineares e recursivas, lidamos com os números híbridos de Lucas. Esses dois métodos discutidos nesta pesquisa apóiam a área de complexicação dessa sequência, inserindo unidades imaginárias em seus termos e em sua recorrência original. Finalmente, sugere-se um trabalho futuro para continuar esse processo, listando futuras aplicações na vida cotidiana e nas áreas da física moderna. 2023-09-25 2024-10-11T20:03:46Z 2024-10-11T20:03:46Z info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo revisado por pares https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1476 10.54104/em.v2i1.1476 https://repositorio.uan.edu.co/handle/123456789/11561 por https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1476/1143 Derechos de autor 2022 ESPACIO MATEMÁTICO application/pdf Universidad Antonio Nariño ESPACIO MATEMÁTICO Journal; Vol. 2 No. 1 (2021); 31-45 Espacio Matemático; Vol. 2 Núm. 1 (2021); 31-45 ESPACIO MATEMÁTICO; Vol. 2 No 1 (2021); 31-45 Revista Espacio Matemático; v. 2 n. 1 (2021); 31-45 2711-1792 10.54104/em.v2i1
spellingShingle Lucas sequence. Two-dimensional Re- lationship. Hybrid Numbers
Sequência de Lucas. Relação Bidimensional. Números Híbridos
Mangueira, Milena
Vieira, Renata
Alves, Francisco
Catarino, Paula
Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence
title Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence
title_full Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence
title_fullStr Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence
title_full_unstemmed Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence
title_short Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence
title_sort two dimensional relations and the hybrid numbers of lucas sequence
topic Lucas sequence. Two-dimensional Re- lationship. Hybrid Numbers
Sequência de Lucas. Relação Bidimensional. Números Híbridos
url https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1476
https://repositorio.uan.edu.co/handle/123456789/11561
work_keys_str_mv AT mangueiramilena twodimensionalrelationsandthehybridnumbersoflucassequence
AT vieirarenata twodimensionalrelationsandthehybridnumbersoflucassequence
AT alvesfrancisco twodimensionalrelationsandthehybridnumbersoflucassequence
AT catarinopaula twodimensionalrelationsandthehybridnumbersoflucassequence
AT mangueiramilena relacoesbidimensionaiseosnumeroshibridosdasequenciadelucas
AT vieirarenata relacoesbidimensionaiseosnumeroshibridosdasequenciadelucas
AT alvesfrancisco relacoesbidimensionaiseosnumeroshibridosdasequenciadelucas
AT catarinopaula relacoesbidimensionaiseosnumeroshibridosdasequenciadelucas
  • Editorial
  • CRAI
  • Repositorio
  • Libros