Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence
In this paper we present the two-dimensional relationships of the Lucas sequence, a sequence similar to the Fibonacci sequence, diering only in relation to their initial values. Given this, originating from the process of hybridization of linear and recursive sequences, we deal with the hybrid numbe...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | info:eu-repo/semantics/article |
Lenguaje: | por |
Publicado: |
Universidad Antonio Nariño
2023
|
Materias: | |
Acceso en línea: | https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1476 https://repositorio.uan.edu.co/handle/123456789/11561 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
_version_ | 1826623652020355072 |
---|---|
author | Mangueira, Milena Vieira, Renata Alves, Francisco Catarino, Paula |
author_facet | Mangueira, Milena Vieira, Renata Alves, Francisco Catarino, Paula |
author_sort | Mangueira, Milena |
collection | DSpace |
description | In this paper we present the two-dimensional relationships of the Lucas sequence, a sequence similar to the Fibonacci sequence, diering only in relation to their initial values. Given this, originating from the process of hybridization of linear and recursive sequences, we deal with the hybrid numbers of Lucas. These two methods discussed in this research support the complexication area of this sequence by inserting imaginary units into its terms and its original recurrence. Finally, future work is suggested to continue this process, listing future applications in everyday life and in areas of modern physics. |
format | info:eu-repo/semantics/article |
id | repositorio.uan.edu.co-123456789-11561 |
institution | Repositorio Digital UAN |
language | por |
publishDate | 2023 |
publisher | Universidad Antonio Nariño |
record_format | dspace |
spelling | repositorio.uan.edu.co-123456789-115612025-03-13T22:58:27Z Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence Relações Bidimensionais e os Números Híbridos da Sequência de Lucas Mangueira, Milena Vieira, Renata Alves, Francisco Catarino, Paula Lucas sequence. Two-dimensional Re- lationship. Hybrid Numbers Sequência de Lucas. Relação Bidimensional. Números Híbridos In this paper we present the two-dimensional relationships of the Lucas sequence, a sequence similar to the Fibonacci sequence, diering only in relation to their initial values. Given this, originating from the process of hybridization of linear and recursive sequences, we deal with the hybrid numbers of Lucas. These two methods discussed in this research support the complexication area of this sequence by inserting imaginary units into its terms and its original recurrence. Finally, future work is suggested to continue this process, listing future applications in everyday life and in areas of modern physics. Neste artigo, apresentamos as relações bidimensionais da sequência de Lucas, uma sequência semelhante à sequência de Fibonacci, diferindo apenas em relação aos seus valores iniciais. Diante disso, oriundo do processo de hibridação de seqüências lineares e recursivas, lidamos com os números híbridos de Lucas. Esses dois métodos discutidos nesta pesquisa apóiam a área de complexicação dessa sequência, inserindo unidades imaginárias em seus termos e em sua recorrência original. Finalmente, sugere-se um trabalho futuro para continuar esse processo, listando futuras aplicações na vida cotidiana e nas áreas da física moderna. 2023-09-25 2024-10-11T20:03:46Z 2024-10-11T20:03:46Z info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo revisado por pares https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1476 10.54104/em.v2i1.1476 https://repositorio.uan.edu.co/handle/123456789/11561 por https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1476/1143 Derechos de autor 2022 ESPACIO MATEMÁTICO application/pdf Universidad Antonio Nariño ESPACIO MATEMÁTICO Journal; Vol. 2 No. 1 (2021); 31-45 Espacio Matemático; Vol. 2 Núm. 1 (2021); 31-45 ESPACIO MATEMÁTICO; Vol. 2 No 1 (2021); 31-45 Revista Espacio Matemático; v. 2 n. 1 (2021); 31-45 2711-1792 10.54104/em.v2i1 |
spellingShingle | Lucas sequence. Two-dimensional Re- lationship. Hybrid Numbers Sequência de Lucas. Relação Bidimensional. Números Híbridos Mangueira, Milena Vieira, Renata Alves, Francisco Catarino, Paula Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence |
title | Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence |
title_full | Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence |
title_fullStr | Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence |
title_full_unstemmed | Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence |
title_short | Two-dimensional Relations and the Hybrid Numbers of Lucas Sequence |
title_sort | two dimensional relations and the hybrid numbers of lucas sequence |
topic | Lucas sequence. Two-dimensional Re- lationship. Hybrid Numbers Sequência de Lucas. Relação Bidimensional. Números Híbridos |
url | https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1476 https://repositorio.uan.edu.co/handle/123456789/11561 |
work_keys_str_mv | AT mangueiramilena twodimensionalrelationsandthehybridnumbersoflucassequence AT vieirarenata twodimensionalrelationsandthehybridnumbersoflucassequence AT alvesfrancisco twodimensionalrelationsandthehybridnumbersoflucassequence AT catarinopaula twodimensionalrelationsandthehybridnumbersoflucassequence AT mangueiramilena relacoesbidimensionaiseosnumeroshibridosdasequenciadelucas AT vieirarenata relacoesbidimensionaiseosnumeroshibridosdasequenciadelucas AT alvesfrancisco relacoesbidimensionaiseosnumeroshibridosdasequenciadelucas AT catarinopaula relacoesbidimensionaiseosnumeroshibridosdasequenciadelucas |