Microbiología predictiva: una ciencia en auge
In recent years, researchers on food microbiology started to use mathematical and statistical tools more frequently. These tools are important to obtain a mathematical model able to describe the evolution of microorganisms in food. Researchers have applied the models to food industries in order to d...
Saved in:
Main Author: | |
---|---|
Format: | Digital |
Language: | spa |
Published: |
UNIVERSIDAD ANTONIO NARIÑO
2014
|
Subjects: | |
Online Access: | https://revistas.uan.edu.co/index.php/ingeuan/article/view/351 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1812645016535826432 |
---|---|
author | Yarce, Cristhian J. |
author_facet | Yarce, Cristhian J. |
author_sort | Yarce, Cristhian J. |
collection | OJS |
description | In recent years, researchers on food microbiology started to use mathematical and statistical tools more frequently. These tools are important to obtain a mathematical model able to describe the evolution of microorganisms in food. Researchers have applied the models to food industries in order to determine a priori the process conditions that lead to the activation and deactivation of microorganisms. It is worth noting that microorganisms can be harmful both to consumers as well as the food´s nutritional properties. Therefore, determining the susceptible conditions is important to prevent the consequences. The mathematical models frequently used include polynomials, logarithmic, exponential and differential equations. I distinguish three classes: primary models, secondary and tertiary. These models are important for reaching robust and reliable predictions regarding the behavior of microorganisms in food. This article presents a revision of microbiological predictive models, applied to the food field. The models presented often use the most studied parameters in predictive microbiology: temperature and pH. |
format | Digital |
id | revistas.uan.edu.co-article-351 |
institution | Revista INGE@UAN |
language | spa |
publishDate | 2014 |
publisher | UNIVERSIDAD ANTONIO NARIÑO |
record_format | ojs |
spelling | revistas.uan.edu.co-article-3512021-02-16T16:55:49Z Predictive microbiology: a rising science Microbiología predictiva: una ciencia en auge Yarce, Cristhian J. Microbiología de alimentos modelos predictivos factores de crecimiento algoritmos matemáticos superficies de respuesta APPCC seguridad alimentaria análisis de riesgos PCC Food microbiology predicitve models rising factors APPCC food security risk analysis PCC In recent years, researchers on food microbiology started to use mathematical and statistical tools more frequently. These tools are important to obtain a mathematical model able to describe the evolution of microorganisms in food. Researchers have applied the models to food industries in order to determine a priori the process conditions that lead to the activation and deactivation of microorganisms. It is worth noting that microorganisms can be harmful both to consumers as well as the food´s nutritional properties. Therefore, determining the susceptible conditions is important to prevent the consequences. The mathematical models frequently used include polynomials, logarithmic, exponential and differential equations. I distinguish three classes: primary models, secondary and tertiary. These models are important for reaching robust and reliable predictions regarding the behavior of microorganisms in food. This article presents a revision of microbiological predictive models, applied to the food field. The models presented often use the most studied parameters in predictive microbiology: temperature and pH. En las últimas dos décadas, para el estudio de la microbiología de alimentos, se han incluido como herramientas de análisis, el uso de la matemática y la estadística; tales conocimientos se combinan para desarrollar modelos matemáticos que describan la evolución de los microorganismos en los alimentos [1]. Para los modelos predictivos hay una gran variedad de estudios aplicados en diferentes matrices e industrias alimenticias [2-4]; estos buscan determinar a priori las condiciones de proceso (pH, la temperatura, la actividad de agua, el tiempo de agitación, entre otros), en las cuales hay activación, desactivación, crecimiento o muerte de los microorganismos que pueden ser perjudiciales tanto para el ser humano como para las propiedades organolépticas y nutricionales de un alimento [5, 6], de esta manera establecer puntos de control que eviten tales resultados [7, 8]. Los modelos matemáticos incluyen ecuaciones de diversos tipos como las polinómicas, logarítmicas, exponenciales, diferenciales, hasta llegar a modelos que incluyan ecuaciones de redes neuronales artificiales; también se clasifican en modelos primarios, secundarios o terciarios; que después de ser consolidados y aplicados logran unas predicciones robustas y seguras; sobre el comportamiento de los microorganismos en alimentos [9]. UNIVERSIDAD ANTONIO NARIÑO 2014-09-08 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uan.edu.co/index.php/ingeuan/article/view/351 INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 3 Núm. 6 (2013) 2346-1446 2145-0935 spa https://revistas.uan.edu.co/index.php/ingeuan/article/view/351/293 https://creativecommons.org/licenses/by-nc-sa/4.0 |
spellingShingle | Microbiología de alimentos modelos predictivos factores de crecimiento algoritmos matemáticos superficies de respuesta APPCC seguridad alimentaria análisis de riesgos PCC Food microbiology predicitve models rising factors APPCC food security risk analysis PCC Yarce, Cristhian J. Microbiología predictiva: una ciencia en auge |
title | Microbiología predictiva: una ciencia en auge |
title_alt | Predictive microbiology: a rising science |
title_full | Microbiología predictiva: una ciencia en auge |
title_fullStr | Microbiología predictiva: una ciencia en auge |
title_full_unstemmed | Microbiología predictiva: una ciencia en auge |
title_short | Microbiología predictiva: una ciencia en auge |
title_sort | microbiologia predictiva una ciencia en auge |
topic | Microbiología de alimentos modelos predictivos factores de crecimiento algoritmos matemáticos superficies de respuesta APPCC seguridad alimentaria análisis de riesgos PCC Food microbiology predicitve models rising factors APPCC food security risk analysis PCC |
topic_facet | Microbiología de alimentos modelos predictivos factores de crecimiento algoritmos matemáticos superficies de respuesta APPCC seguridad alimentaria análisis de riesgos PCC Food microbiology predicitve models rising factors APPCC food security risk analysis PCC |
url | https://revistas.uan.edu.co/index.php/ingeuan/article/view/351 |
work_keys_str_mv | AT yarcecristhianj predictivemicrobiologyarisingscience AT yarcecristhianj microbiologiapredictivaunacienciaenauge |