Algoritmos de Aprendizaje Supervisado en la Clasificación de Exoplanetas en Python

Currently there is a large number of databases, given the multiple sources such as: social networks, banking movements, consultations in web browsers for private, business or academic use. A clear example is the study of exoplanets carried out by NASA, through multiple sources such as ground-based o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González Cangrejo, Johans
Otros Autores: Orjuela Vargas, Sergio Alejandro
Formato: Trabajo de grado (Pregrado y/o Especialización)
Lenguaje:spa
Publicado: Universidad Antonio Nariño 2022
Materias:
Acceso en línea:http://repositorio.uan.edu.co/handle/123456789/5839
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Currently there is a large number of databases, given the multiple sources such as: social networks, banking movements, consultations in web browsers for private, business or academic use. A clear example is the study of exoplanets carried out by NASA, through multiple sources such as ground-based observatories and space telescopes (NASA, 2021). It is important to mention that, at the time of starting this work, the aforementioned database contains 4512 confirmed planets; without a doubt, a quite important figure with enough potential to study in search of patterns and new knowledge that leads to new observations.
  • Editorial
  • CRAI
  • Repositorio
  • Libros