Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior

Concrete is one of the most widely used materials for the structuring of different buildings such as homes, schools, shopping centers, bridges, and the road network of the different cities and municipalities. This implies a large consumption of this cementitious material, in the case of Colombia for...

Full description

Saved in:
Bibliographic Details
Main Authors: Gomez Nova, Gisseth Katherine, Medina Patiño, Laura Alejandra
Other Authors: Avila Leon, Ivan Alejandro
Format: Trabajo de grado (Pregrado y/o Especialización)
Language:spa
Published: Universidad Antonio Nariño 2021
Subjects:
Online Access:http://repositorio.uan.edu.co/handle/123456789/5774
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1812647898628751360
author Gomez Nova, Gisseth Katherine
Medina Patiño, Laura Alejandra
author2 Avila Leon, Ivan Alejandro
author_facet Avila Leon, Ivan Alejandro
Gomez Nova, Gisseth Katherine
Medina Patiño, Laura Alejandra
author_sort Gomez Nova, Gisseth Katherine
collection DSpace
description Concrete is one of the most widely used materials for the structuring of different buildings such as homes, schools, shopping centers, bridges, and the road network of the different cities and municipalities. This implies a large consumption of this cementitious material, in the case of Colombia for the period established between July 2020 and June 2021, there have been produced 13,454.9 thousand tons of gray cement (DANE, 2021). This material is characterized by its resistance and durability; however, microcracks may exist in the matrix of cement as a result of mechanical load and environmental load; Due to their small size they are not visible and give way to the formation of larger cracks due to the pore connectivity. These larger cracks provide a path for aggressive substances that cause corrosion, which accelerates the deterioration of the structural properties of the material and is a serious threat to the safety, integrity and durability of concrete (Gonzalez et al., 2018; Li, 2018). On the other hand, the production of Cement for different types of material generates carbon dioxide (CO2) emissions. For every 1000 g of cement, approximately 900 g of CO2 are produced (ENNOMOTIVE, 2020), This compound is part of the greenhouse effect gases, which contribute to the environmental problem known as climate change.
format Trabajo de grado (Pregrado y/o Especialización)
id repositorio.uan.edu.co-123456789-5774
institution Repositorio Digital UAN
language spa
publishDate 2021
publisher Universidad Antonio Nariño
record_format dspace
spelling repositorio.uan.edu.co-123456789-57742024-10-09T23:05:36Z Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior Gomez Nova, Gisseth Katherine Medina Patiño, Laura Alejandra Avila Leon, Ivan Alejandro Concreto autorreparable Laboratorio de enseñanza 628 Self-healing concrete Teaching lab Concrete is one of the most widely used materials for the structuring of different buildings such as homes, schools, shopping centers, bridges, and the road network of the different cities and municipalities. This implies a large consumption of this cementitious material, in the case of Colombia for the period established between July 2020 and June 2021, there have been produced 13,454.9 thousand tons of gray cement (DANE, 2021). This material is characterized by its resistance and durability; however, microcracks may exist in the matrix of cement as a result of mechanical load and environmental load; Due to their small size they are not visible and give way to the formation of larger cracks due to the pore connectivity. These larger cracks provide a path for aggressive substances that cause corrosion, which accelerates the deterioration of the structural properties of the material and is a serious threat to the safety, integrity and durability of concrete (Gonzalez et al., 2018; Li, 2018). On the other hand, the production of Cement for different types of material generates carbon dioxide (CO2) emissions. For every 1000 g of cement, approximately 900 g of CO2 are produced (ENNOMOTIVE, 2020), This compound is part of the greenhouse effect gases, which contribute to the environmental problem known as climate change. El concreto es uno de los materiales más implementados para la estructuración de distintas edificaciones como viviendas, colegios, centros comerciales, puentes, y la malla vial de las distintas ciudades y municipios. Esto implica un gran consumo de este material cementoso, en el caso de Colombia para el periodo establecido entre julio de 2020 y junio de 2021, se han producido 13454,9 miles de toneladas de cemento gris (DANE, 2021). Este material se caracteriza por su resistencia y durabilidad; sin embargo, pueden existir microgrietas en la matriz del cemento como resultado de la carga mecánica y carga ambiental; debido a su tamaño reducido no son visibles y le dan paso a la formación de grietas más grandes a causa de la conectividad de los poros. Estas grietas de mayor tamaño proporcionan un camino para las sustancias agresivas que provocan la corrosión, lo cual va acelerando el deterioro de las propiedades estructurales del material y es una grave amenaza para la seguridad, integridad y durabilidad del concreto (Gonzalez et al., 2018; Li, 2018). Por otra parte, la producción de cemento para los distintos tipos de material genera emisiones de dióxido de carbono (CO2). Por cada 1000 g de cemento se producen aproximadamente 900 g de CO2 (ENNOMOTIVE, 2020), este compuesto hace parte de los gases efecto invernadero, que aportan a la problemática ambiental conocida como cambio climático. Ingeniero(a) Ambiental Pregrado Presencial Monografía 2021-12-06T19:44:41Z 2021-12-06T19:44:41Z 2021-11-18 Trabajo de grado (Pregrado y/o Especialización) info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_7a1f http://purl.org/coar/version/c_970fb48d4fbd8a85 http://repositorio.uan.edu.co/handle/123456789/5774 Alazhari, M., Sharma, T., Heath, A., Cooper, R., & Paine, K. (2018). Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Construction and Building Materials, 160, 610-619. https://doi.org/10.1016/j.conbuildmat.2017.11.086 Alconz Ingala, W. P. (2006). Material de apoyo didáctico para la enseñanza y aprendizaje de la asignatura materiales de construcción (Guía de las practicas de campo y normas de calidad). Universidad Mayor de San Simón. Retrieved septiembre 27, 2021, from https://topodata.com/wp-content/uploads/2019/09/001MaterialesConstruccion.pdf Basa, B., Panda, K. C., Sahoo, N. K., & Jena, S. (2020). Impact of Bacillus subtilis bacterium on the properties of concrete. Materials Today: Proceedings, 32, 651-656. https://doi.org/10.1016/j.matpr.2020.03.129 Basha, S., Lingamgunta, L. K., Kannali, J., Gajula, S. K., Bandikari, R., Dasari, S., Dalavai, V., Chinthala, P., Gundala, P. B., Kutagolla, P., & Balaji, V. K. (2018). Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties. Scientific Reports, 8(1), 6448. https://doi.org/10.1038/s41598-018-24730-3 Bayati, M., & Saadabadi, L. A. (2021). Efficiency of bacteria based self-healing method in alkaliactivated slag (AAS) mortars. Journal of Building Engineering, 42, 102492. https://doi.org/10.1016/j.jobe.2021.102492 Bush, L., & Vazques-Pertejo, M. T. (2019). Generalidades sobre las bacterias anaerobias— Enfermedades infecciosas. Manual MSD versión para profesionales. https://www.msdmanuals.com/es/professional/enfermedades-infecciosas/bacteriasanaerobias/generalidades-sobre-las-bacterias-anaerobias Castanier, S., Le Métayer-Levrel, G., & Perthuisot, J.-P. (1999). Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view. Sedimentary Geology, 126(1), 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7 Chen, B., Sun, W., Sun, X., Cui, C., Lai, J., Wang, Y., & Feng, J. (2021). Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochemistry, 107, 100-111. https://doi.org/10.1016/j.procbio.2021.05.001 Chetty, K., Xie, S., Song, Y., McCarthy, T., Garbe, U., Li, X., & Jiang, G. (2021). Self-healing bioconcrete based on non-axenic granules: A potential solution for concrete wastewater infrastructure. Journal of Water Process Engineering, 42, 102139. https://doi.org/10.1016/j.jwpe.2021.102139 Choi, S., Park, S., Park, M., Kim, Y., Lee, K. M., Lee, O.-M., & Son, H.-J. (2021). Characterization of a Novel CaCO3-Forming Alkali-Tolerant Rhodococcus erythreus S26 as a Filling Agent for Repairing Concrete Cracks. Molecules, 26(10), 2967. https://doi.org/10.3390/molecules26102967 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ spa Acceso abierto Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf application/pdf Universidad Antonio Nariño Ingeniería Ambiental Facultad de Ingeniería Ambiental Bogotá - Sur
spellingShingle Concreto autorreparable
Laboratorio de enseñanza
628
Self-healing concrete
Teaching lab
Gomez Nova, Gisseth Katherine
Medina Patiño, Laura Alejandra
Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title_full Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title_fullStr Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title_full_unstemmed Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title_short Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title_sort bases teoricas para la implementacion del concreto autorreparable en laboratorios de ensenanza superior
topic Concreto autorreparable
Laboratorio de enseñanza
628
Self-healing concrete
Teaching lab
url http://repositorio.uan.edu.co/handle/123456789/5774
work_keys_str_mv AT gomeznovagissethkatherine basesteoricasparalaimplementaciondelconcretoautorreparableenlaboratoriosdeensenanzasuperior
AT medinapatinolauraalejandra basesteoricasparalaimplementaciondelconcretoautorreparableenlaboratoriosdeensenanzasuperior
  • Editorial
  • CRAI
  • Repositorio
  • Libros