Automatic Classification of mechanical vibration patterns in rotating machinery affected by unbalance

In this paper, we present an algorithm for automatic classification of vibration patterns on rotating machinery affected by unbalance from spectral analysis. We developed this algorithm using case-based reasoning and various descriptors. The raised descriptors were: The root mean square value (RMS),...

Full description

Saved in:
Bibliographic Details
Main Authors: Sandoval Rodríguez, Camilo Leonardo, Barros, Andres Alejandro, Herreño Ávila, Sergio Alberto
Format: info:eu-repo/semantics/publishedVersion
Language:spa
Published: Universidad Antonio Nariño 2021
Subjects:
Online Access:http://revistas.uan.edu.co/index.php/ingeuan/article/view/361
http://repositorio.uan.edu.co/handle/123456789/3932
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1812647236680548352
author Sandoval Rodríguez, Camilo Leonardo
Barros, Andres Alejandro
Herreño Ávila, Sergio Alberto
author_facet Sandoval Rodríguez, Camilo Leonardo
Barros, Andres Alejandro
Herreño Ávila, Sergio Alberto
author_sort Sandoval Rodríguez, Camilo Leonardo
collection DSpace
description In this paper, we present an algorithm for automatic classification of vibration patterns on rotating machinery affected by unbalance from spectral analysis. We developed this algorithm using case-based reasoning and various descriptors. The raised descriptors were: The root mean square value (RMS), the energy of Fourier spectra, the Higher Order frequency moments and the maximum value of the Fourier spectra. The job was to induce imbalance to a universal motor, taking the vibration signal in time domain by 3300 XL 8mm Proximity sensors and through a data acquisition card NI USB 6008, bringing data to the computer where we implemented a virtual instrument for capturing data and its subsequent transformation to obtain frequency spectrum. Consequently, we developed the algorithm in Matlab to automatically identify the imbalance present in the machine, using the technique of case-based reasoning, based on the calculation of the descriptors and the application of these within the algorithm implemented using the Euclidean distance as part of the decision mechanism among patterns without unbalancing vibration. The results show the RMS as the best performing descriptor for classification showed.
format info:eu-repo/semantics/publishedVersion
id repositorio.uan.edu.co-123456789-3932
institution Repositorio Digital UAN
language spa
publishDate 2021
publisher Universidad Antonio Nariño
record_format dspace
spelling repositorio.uan.edu.co-123456789-39322024-10-09T22:47:05Z Automatic Classification of mechanical vibration patterns in rotating machinery affected by unbalance Clasificación automática de patrones de vibraciones mecánicas en maquinaria rotativa afectada por desbalanceo Sandoval Rodríguez, Camilo Leonardo Barros, Andres Alejandro Herreño Ávila, Sergio Alberto Vibrational analysis pattern recognition failure descriptors on rotating machine Fourier spectrum Análisis vibracional reconocimiento de patrones descriptores de falla en maquina rotativa espectro de Fourier In this paper, we present an algorithm for automatic classification of vibration patterns on rotating machinery affected by unbalance from spectral analysis. We developed this algorithm using case-based reasoning and various descriptors. The raised descriptors were: The root mean square value (RMS), the energy of Fourier spectra, the Higher Order frequency moments and the maximum value of the Fourier spectra. The job was to induce imbalance to a universal motor, taking the vibration signal in time domain by 3300 XL 8mm Proximity sensors and through a data acquisition card NI USB 6008, bringing data to the computer where we implemented a virtual instrument for capturing data and its subsequent transformation to obtain frequency spectrum. Consequently, we developed the algorithm in Matlab to automatically identify the imbalance present in the machine, using the technique of case-based reasoning, based on the calculation of the descriptors and the application of these within the algorithm implemented using the Euclidean distance as part of the decision mechanism among patterns without unbalancing vibration. The results show the RMS as the best performing descriptor for classification showed. En este trabajo, se desarrolla un algoritmo de clasificación automática de los patrones de vibración en maquinaria rotativa afectada por desbalanceo a partir del análisis espectral. En este sentido, se propuso un algoritmo experto usando razonamiento basado en casos y el planteamiento de diversos descriptores de la falla desde el punto de vista de los espectros. Los descriptores planteados fueron: El valor medio cuadrático (RMS), la energía, el valor máximo y los momentos de frecuencia de alto orden (HOFM).  El trabajo entonces consistió en inducir un desbalanceo a un motor universal, tomar la señal de vibración en el dominio del tiempo mediante sensores proximitor y mediante una tarjeta de adquisición de datos USB 6008 de National Instruments, llevar los datos al computador en donde se implementó un Instrumento virtual para la captura de los datos y su posterior transformación para la obtención del espectro de frecuencias. Posteriormente, se desarrolló un algoritmo en Matlab para identificar de manera automática el desbalanceo presente en la maquina, mediante la técnica de razonamiento basado en casos, a partir del cálculo de los descriptores y la aplicación de estos dentro del algoritmo implementado usando la distancia euclidiana como parte del mecanismo de decisión entre patrones de vibración con y sin desbalanceo. Los resultados obtenidos  revelan al RMS como el descriptor que mejor desempeño mostró para la clasificación. 2021-06-16T13:53:07Z 2021-06-16T13:53:07Z 2013-10-28 info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article http://purl.org/coar/version/c_970fb48d4fbd8a85 http://revistas.uan.edu.co/index.php/ingeuan/article/view/361 http://repositorio.uan.edu.co/handle/123456789/3932 spa http://revistas.uan.edu.co/index.php/ingeuan/article/view/361/301 Acceso abierto Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 application/pdf Universidad Antonio Nariño 2346-1446 2145-0935 INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 4 Núm. 7 (2013)
spellingShingle Vibrational analysis
pattern recognition
failure descriptors on rotating machine
Fourier spectrum
Análisis vibracional
reconocimiento de patrones
descriptores de falla en maquina rotativa
espectro de Fourier
Sandoval Rodríguez, Camilo Leonardo
Barros, Andres Alejandro
Herreño Ávila, Sergio Alberto
Automatic Classification of mechanical vibration patterns in rotating machinery affected by unbalance
title Automatic Classification of mechanical vibration patterns in rotating machinery affected by unbalance
title_full Automatic Classification of mechanical vibration patterns in rotating machinery affected by unbalance
title_fullStr Automatic Classification of mechanical vibration patterns in rotating machinery affected by unbalance
title_full_unstemmed Automatic Classification of mechanical vibration patterns in rotating machinery affected by unbalance
title_short Automatic Classification of mechanical vibration patterns in rotating machinery affected by unbalance
title_sort automatic classification of mechanical vibration patterns in rotating machinery affected by unbalance
topic Vibrational analysis
pattern recognition
failure descriptors on rotating machine
Fourier spectrum
Análisis vibracional
reconocimiento de patrones
descriptores de falla en maquina rotativa
espectro de Fourier
url http://revistas.uan.edu.co/index.php/ingeuan/article/view/361
http://repositorio.uan.edu.co/handle/123456789/3932
work_keys_str_mv AT sandovalrodriguezcamiloleonardo automaticclassificationofmechanicalvibrationpatternsinrotatingmachineryaffectedbyunbalance
AT barrosandresalejandro automaticclassificationofmechanicalvibrationpatternsinrotatingmachineryaffectedbyunbalance
AT herrenoavilasergioalberto automaticclassificationofmechanicalvibrationpatternsinrotatingmachineryaffectedbyunbalance
AT sandovalrodriguezcamiloleonardo clasificacionautomaticadepatronesdevibracionesmecanicasenmaquinariarotativaafectadapordesbalanceo
AT barrosandresalejandro clasificacionautomaticadepatronesdevibracionesmecanicasenmaquinariarotativaafectadapordesbalanceo
AT herrenoavilasergioalberto clasificacionautomaticadepatronesdevibracionesmecanicasenmaquinariarotativaafectadapordesbalanceo
  • Editorial
  • CRAI
  • Repositorio
  • Libros