Predictive microbiology: a rising science

In recent years, researchers on food microbiology started to use mathematical and statistical tools more frequently. These tools are important to obtain a mathematical model able to describe the evolution of microorganisms in food. Researchers have applied the models to food industries in order to d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Yarce, Cristhian J.
Formato: info:eu-repo/semantics/publishedVersion
Lenguaje:spa
Publicado: Universidad Antonio Nariño 2021
Materias:
Acceso en línea:http://revistas.uan.edu.co/index.php/ingeuan/article/view/351
http://repositorio.uan.edu.co/handle/123456789/3924
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
_version_ 1812648570652721152
author Yarce, Cristhian J.
author_facet Yarce, Cristhian J.
author_sort Yarce, Cristhian J.
collection DSpace
description In recent years, researchers on food microbiology started to use mathematical and statistical tools more frequently. These tools are important to obtain a mathematical model able to describe the evolution of microorganisms in food. Researchers have applied the models to food industries in order to determine a priori the process conditions that lead to the activation and deactivation of microorganisms. It is worth noting that microorganisms can be harmful both to consumers as well as the food´s nutritional properties. Therefore, determining the susceptible conditions is important to prevent the consequences. The mathematical models frequently used include polynomials, logarithmic, exponential and differential equations. I distinguish three classes: primary models, secondary and tertiary. These models are important for reaching robust and reliable predictions regarding the behavior of microorganisms in food. This article presents a revision of microbiological predictive models, applied to the food field. The models presented often use the most studied parameters in predictive microbiology: temperature and pH.
format info:eu-repo/semantics/publishedVersion
id repositorio.uan.edu.co-123456789-3924
institution Repositorio Digital UAN
language spa
publishDate 2021
publisher Universidad Antonio Nariño
record_format dspace
spelling repositorio.uan.edu.co-123456789-39242024-10-09T23:26:23Z Predictive microbiology: a rising science Microbiología predictiva: una ciencia en auge Yarce, Cristhian J. Microbiología de alimentos modelos predictivos factores de crecimiento algoritmos matemáticos superficies de respuesta APPCC seguridad alimentaria análisis de riesgos PCC Food microbiology predicitve models rising factors APPCC food security risk analysis PCC In recent years, researchers on food microbiology started to use mathematical and statistical tools more frequently. These tools are important to obtain a mathematical model able to describe the evolution of microorganisms in food. Researchers have applied the models to food industries in order to determine a priori the process conditions that lead to the activation and deactivation of microorganisms. It is worth noting that microorganisms can be harmful both to consumers as well as the food´s nutritional properties. Therefore, determining the susceptible conditions is important to prevent the consequences. The mathematical models frequently used include polynomials, logarithmic, exponential and differential equations. I distinguish three classes: primary models, secondary and tertiary. These models are important for reaching robust and reliable predictions regarding the behavior of microorganisms in food. This article presents a revision of microbiological predictive models, applied to the food field. The models presented often use the most studied parameters in predictive microbiology: temperature and pH. En las últimas dos décadas, para el estudio de la microbiología de alimentos, se han incluido como herramientas de análisis, el uso  de la matemática y la estadística; tales conocimientos se combinan para desarrollar modelos matemáticos que describan la evolución de los microorganismos en los alimentos [1]. Para los modelos predictivos hay una gran variedad de estudios aplicados en diferentes matrices e industrias alimenticias [2-4]; estos buscan determinar a priori las condiciones de proceso (pH, la temperatura, la actividad de agua, el tiempo de agitación, entre otros), en las cuales hay activación, desactivación, crecimiento o muerte de los microorganismos que pueden ser perjudiciales tanto para el ser humano como para las propiedades organolépticas y nutricionales de un alimento [5, 6], de esta manera establecer puntos de control que eviten tales resultados [7, 8]. Los modelos matemáticos incluyen ecuaciones de diversos tipos como las polinómicas, logarítmicas, exponenciales, diferenciales, hasta llegar a modelos que incluyan ecuaciones de  redes neuronales artificiales; también se clasifican en modelos primarios, secundarios o terciarios; que después de ser consolidados y aplicados logran unas predicciones robustas y seguras; sobre el comportamiento de los microorganismos en alimentos [9]. 2021-06-16T13:53:05Z 2021-06-16T13:53:05Z 2014-09-08 info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article http://purl.org/coar/version/c_970fb48d4fbd8a85 http://revistas.uan.edu.co/index.php/ingeuan/article/view/351 http://repositorio.uan.edu.co/handle/123456789/3924 spa http://revistas.uan.edu.co/index.php/ingeuan/article/view/351/293 Acceso abierto Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 application/pdf Universidad Antonio Nariño 2346-1446 2145-0935 INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 3 Núm. 6 (2013)
spellingShingle Microbiología de alimentos
modelos predictivos
factores de crecimiento
algoritmos matemáticos
superficies de respuesta
APPCC
seguridad alimentaria
análisis de riesgos
PCC
Food microbiology
predicitve models
rising factors
APPCC
food security
risk analysis
PCC
Yarce, Cristhian J.
Predictive microbiology: a rising science
title Predictive microbiology: a rising science
title_full Predictive microbiology: a rising science
title_fullStr Predictive microbiology: a rising science
title_full_unstemmed Predictive microbiology: a rising science
title_short Predictive microbiology: a rising science
title_sort predictive microbiology a rising science
topic Microbiología de alimentos
modelos predictivos
factores de crecimiento
algoritmos matemáticos
superficies de respuesta
APPCC
seguridad alimentaria
análisis de riesgos
PCC
Food microbiology
predicitve models
rising factors
APPCC
food security
risk analysis
PCC
url http://revistas.uan.edu.co/index.php/ingeuan/article/view/351
http://repositorio.uan.edu.co/handle/123456789/3924
work_keys_str_mv AT yarcecristhianj predictivemicrobiologyarisingscience
AT yarcecristhianj microbiologiapredictivaunacienciaenauge
  • Editorial
  • CRAI
  • Repositorio
  • Libros