Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA

There are 3 main types of wind turbines, their difference lies mainly in their type of rotor, the direction of their axis, and the shape of their blades. For vertical axis, wind turbines are the Darrieus, Giromill, and Savonius. The present project, which aims to simulate the savonius rotor by adapt...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vega Beleño, Daniela Andrea, Pereira Guerrero, Brayan Daniel
Otros Autores: Fabregas Villegas, Jonathan
Formato: Trabajo de grado (Pregrado y/o Especialización)
Lenguaje:spa
Publicado: Universidad Antonio Nariño 2021
Materias:
Acceso en línea:http://repositorio.uan.edu.co/handle/123456789/2578
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
_version_ 1812648428359909376
author Vega Beleño, Daniela Andrea
Pereira Guerrero, Brayan Daniel
author2 Fabregas Villegas, Jonathan
author_facet Fabregas Villegas, Jonathan
Vega Beleño, Daniela Andrea
Pereira Guerrero, Brayan Daniel
author_sort Vega Beleño, Daniela Andrea
collection DSpace
description There are 3 main types of wind turbines, their difference lies mainly in their type of rotor, the direction of their axis, and the shape of their blades. For vertical axis, wind turbines are the Darrieus, Giromill, and Savonius. The present project, which aims to simulate the savonius rotor by adapting a NACA profile on its blades. For its execution there will be a CAD design software called SolidWorks® in which the geometry of the selected NACA profile will be outlined and generated to be used in the savonius rotor, after this and with the help of CFD simulation (Fluid Computational Dynamics) in the ANSYS software, its power coefficient is evaluated. Results were obtained from the comparison of the behavior of each rotor according to its power generated, power coefficient and speeds reached, showing that the adaptation of an aerodynamic profile improves the behavior of the rotor as the wind speed increases.
format Trabajo de grado (Pregrado y/o Especialización)
id repositorio.uan.edu.co-123456789-2578
institution Repositorio Digital UAN
language spa
publishDate 2021
publisher Universidad Antonio Nariño
record_format dspace
spelling repositorio.uan.edu.co-123456789-25782024-10-09T23:20:46Z Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA Vega Beleño, Daniela Andrea Pereira Guerrero, Brayan Daniel Fabregas Villegas, Jonathan Palencia Diaz, Argemiro Rotor Savonius Alabe NACA CFD Rotor Savonius Alabe NACA CFD There are 3 main types of wind turbines, their difference lies mainly in their type of rotor, the direction of their axis, and the shape of their blades. For vertical axis, wind turbines are the Darrieus, Giromill, and Savonius. The present project, which aims to simulate the savonius rotor by adapting a NACA profile on its blades. For its execution there will be a CAD design software called SolidWorks® in which the geometry of the selected NACA profile will be outlined and generated to be used in the savonius rotor, after this and with the help of CFD simulation (Fluid Computational Dynamics) in the ANSYS software, its power coefficient is evaluated. Results were obtained from the comparison of the behavior of each rotor according to its power generated, power coefficient and speeds reached, showing that the adaptation of an aerodynamic profile improves the behavior of the rotor as the wind speed increases. Existen 3 principales tipos de aerogeneradores, su diferencia radica principalmente en su tipo de rotor, la dirección de su eje y la forma de sus alabes. Para los aerogeneradores de eje vertical se encuentra los Darrieus, Giromill y Savonius. El presente proyecto, que tiene como finalidad la simulación del rotor tipo savonius adaptando en sus alabes un perfil NACA. Para la ejecución del mismo se contará con un software de diseño CAD llamado SolidWorks® en el cual se delineará y se generará la geometría del perfil NACA seleccionado para ser usado en el rotor savonius, luego de esto y con la ayuda de simulación CFD (Computacional Fluid Dynamics) en el software ANSYS se evalúa el coeficiente de desempeño del mismo. Se obtuvieron resultados de la comparación del comportamiento de cada rotor según su potencia generada, coeficiente de desempeño y velocidades alcanzadas, mostrando que la adaptación de un perfil aerodinámico mejora el comportamiento del rotor conforme se incrementa la velocidad del viento. Otro Ingeniero(a) Mecánico(a) Pregrado $13.800.000 (de acuerdo a lo reportado en el anteproyecto): $3.300.000 (Propios) $6.500.000 (UAN) $4.000.000 (Empresa) Presencial 2021-03-03T20:33:47Z 2021-03-03T20:33:47Z 2020-06-06 Trabajo de grado (Pregrado y/o Especialización) info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_7a1f http://purl.org/coar/version/c_970fb48d4fbd8a85 http://repositorio.uan.edu.co/handle/123456789/2578 Cárdenas, R. D. (2015). Generador eólico como proyecto de intercambio cultural y tecnológico entre Flathead Valley Community College de Montana y el Centro de Automatización Industrial del SENA. Vector, 10, 80–88. De Lellis, M., Reginatto, R., Saraiva, R., & Trofino, A. (2018). The Betz limit applied to Airborne Wind Energy. Renewable Energy, 127, 32–40. https://doi.org/10.1016/j.renene.2018.04.034 Harpe, S. E., Zohrabi, M., Barkaoui, K., Lozano, L. M., García-Cueto, E., Muñiz, J., Menold, N., Kaczmirek, L., Lenzner, T., Neusar, A., Martin-Raugh, M., Tannenbaum, R. J., Tocci, C. M., Reese, C., Reid, R., Dupaul, G. J., Power, T. J., Anastopoulos, A. D., Rogers-Adkinson, D., … Schillewaert, N. (2015). No Titleبیبیب. ثبثبثب, ث ققثق(2), ثقثقثقثق. https://doi.org/10.5897/ERR2015 Hidalgo, I. R., Rojas, I. O., Riano, A. B., Morales, C. C., & Arias, A. R. (2018). Evaluation of a Geometric Modification in Savonius Rotor Using CFD Evaluación de Modificación Geométrica en Rotor Savonius Usando CFD. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings. https://doi.org/10.1109/ANDESCON.2018.8564608 Kothe, L. B., Möller, S. V., & Petry, A. P. (2020). Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy, 148, 627–638. https://doi.org/10.1016/j.renene.2019.10.151 Mahmoud, N. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19–25. https://doi.org/10.1016/j.aej.2012.07.003 Paz, S. P. (2013). El perfil alar y su nomenclatura NACA. Ciencia y Poder Aéreo, 8(1), 26–32. https://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/download/4/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4/106 Pulfer, J., Meza, W., & Mitjans, F. (2017). eólicos a eje vertical y de arrastre diferencial Energy efficiency assessment of four designs of vertical axis and drag differential wind turbines. xx(x), 32. Saad, A. S., El-Sharkawy, I. I., Ookawara, S., & Ahmed, M. (2020). Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conversion and Management, 209(March). https://doi.org/10.1016/j.enconman.2020.112673 Troncoso, C. (2014). Diseño de un rotor hidrocinético usando perfiles NACA y NREL. Zemamou, A. M. (2017). ScienceDirect ScienceDirect Review of savonius wind turbine design and performance Review of savonius wind turbine design and performance *, of the feasibility using the temperature function for a district heat demand forecast. Energy Procedia, 141, 383–388. https://doi.org/10.1016/j.egypro.2017.11.047 Cárdenas, R. D. (2015). Generador eólico como proyecto de intercambio cultural y tecnológico entre Flathead Valley Community College de Montana y el Centro de Automatización Industrial del SENA. Vector, 10, 80–88. De Lellis, M., Reginatto, R., Saraiva, R., & Trofino, A. (2018). The Betz limit applied to Airborne Wind Energy. Renewable Energy, 127, 32–40. https://doi.org/10.1016/j.renene.2018.04.034 Harpe, S. E., Zohrabi, M., Barkaoui, K., Lozano, L. M., García-Cueto, E., Muñiz, J., Menold, N., Kaczmirek, L., Lenzner, T., Neusar, A., Martin-Raugh, M., Tannenbaum, R. J., Tocci, C. M., Reese, C., Reid, R., Dupaul, G. J., Power, T. J., Anastopoulos, A. D., Rogers-Adkinson, D., … Schillewaert, N. (2015). No Titleبیبیب. ثبثبثب, ث ققثق(2), ثقثقثقثق. https://doi.org/10.5897/ERR2015 Hidalgo, I. R., Rojas, I. O., Riano, A. B., Morales, C. C., & Arias, A. R. (2018). Evaluation of a Geometric Modification in Savonius Rotor Using CFD Evaluación de Modificación Geométrica en Rotor Savonius Usando CFD. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings. https://doi.org/10.1109/ANDESCON.2018.8564608 Kothe, L. B., Möller, S. V., & Petry, A. P. (2020). Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy, 148, 627–638. https://doi.org/10.1016/j.renene.2019.10.151 Mahmoud, N. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19–25. https://doi.org/10.1016/j.aej.2012.07.003 Paz, S. P. (2013). El perfil alar y su nomenclatura NACA. Ciencia y Poder Aéreo, 8(1), 26–32. https://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/download/4/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4/106 Pulfer, J., Meza, W., & Mitjans, F. (2017). eólicos a eje vertical y de arrastre diferencial Energy efficiency assessment of four designs of vertical axis and drag differential wind turbines. xx(x), 32. Saad, A. S., El-Sharkawy, I. I., Ookawara, S., & Ahmed, M. (2020). Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conversion and Management, 209(March). https://doi.org/10.1016/j.enconman.2020.112673 Troncoso, C. (2014). Diseño de un rotor hidrocinético usando perfiles NACA y NREL. Zemamou, A. M. (2017). ScienceDirect ScienceDirect Review of savonius wind turbine design and performance Review of savonius wind turbine design and performance *, of the feasibility using the temperature function for a district heat demand forecast. Energy Procedia, 141, 383–388. https://doi.org/10.1016/j.egypro.2017.11.047 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ spa Acceso abierto Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf application/pdf Universidad Antonio Nariño Ingeniería Mecánica Facultad de Ingeniería Mecánica, Electrónica y Biomédica Puerto Colombia Barranquilla
spellingShingle Rotor
Savonius
Alabe
NACA
CFD
Rotor
Savonius
Alabe
NACA
CFD
Vega Beleño, Daniela Andrea
Pereira Guerrero, Brayan Daniel
Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title_full Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title_fullStr Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title_full_unstemmed Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title_short Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title_sort simulacion de rotores tipo savonius adaptando en sus alabes un perfil naca
topic Rotor
Savonius
Alabe
NACA
CFD
Rotor
Savonius
Alabe
NACA
CFD
url http://repositorio.uan.edu.co/handle/123456789/2578
work_keys_str_mv AT vegabelenodanielaandrea simulacionderotorestiposavoniusadaptandoensusalabesunperfilnaca
AT pereiraguerrerobrayandaniel simulacionderotorestiposavoniusadaptandoensusalabesunperfilnaca
  • Editorial
  • CRAI
  • Repositorio
  • Libros