Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastres

In order to prevent natural flood disasters it important to identify the flood areas. In Colombia, there is space to develop automatic tools able to detect and study flood areas. For this reason, in this work we propose a computational tool in MATLAB, able to detect and classify Colombia’s flood zon...

Full description

Saved in:
Bibliographic Details
Main Authors: Avendaño Pérez, Jonathan, Parra Plazas, Jaime Alberto, Bayona, Jhon Fredy
Format: Digital
Language:spa
Published: UNIVERSIDAD ANTONIO NARIÑO 2014
Subjects:
Online Access:https://revistas.uan.edu.co/index.php/ingeuan/article/view/365
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1812645018937065472
author Avendaño Pérez, Jonathan
Parra Plazas, Jaime Alberto
Bayona, Jhon Fredy
author_facet Avendaño Pérez, Jonathan
Parra Plazas, Jaime Alberto
Bayona, Jhon Fredy
author_sort Avendaño Pérez, Jonathan
collection OJS
description In order to prevent natural flood disasters it important to identify the flood areas. In Colombia, there is space to develop automatic tools able to detect and study flood areas. For this reason, in this work we propose a computational tool in MATLAB, able to detect and classify Colombia’s flood zones in SAR imager. In particular, we used different classifiers, and according to the performance we selected the best. The training database was generated with the results of Fuzzy Clustering, K -means and Region -Growing segmentations on flood zones in SAR imagery. We used two different classifiers: the first one is a Bayes classifier, while the second one is a Support Vector Machine (SVM). In order to evaluate the performance, we used indices such as the overall accuracy, user accuracy and Kappa index. According to the results, the SVM classifier presents better accuracy. However, the Bayes classifier had better results classifying pixels corresponding to populations even with little training data.
format Digital
id revistas.uan.edu.co-article-365
institution Revista INGE@UAN
language spa
publishDate 2014
publisher UNIVERSIDAD ANTONIO NARIÑO
record_format ojs
spelling revistas.uan.edu.co-article-3652021-02-16T16:59:17Z Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastres Avendaño Pérez, Jonathan Parra Plazas, Jaime Alberto Bayona, Jhon Fredy SAR Clasificación Segmentación imágenes de zonas de inundación SAR Classification Segmentation flood areas imagery In order to prevent natural flood disasters it important to identify the flood areas. In Colombia, there is space to develop automatic tools able to detect and study flood areas. For this reason, in this work we propose a computational tool in MATLAB, able to detect and classify Colombia’s flood zones in SAR imager. In particular, we used different classifiers, and according to the performance we selected the best. The training database was generated with the results of Fuzzy Clustering, K -means and Region -Growing segmentations on flood zones in SAR imagery. We used two different classifiers: the first one is a Bayes classifier, while the second one is a Support Vector Machine (SVM). In order to evaluate the performance, we used indices such as the overall accuracy, user accuracy and Kappa index. According to the results, the SVM classifier presents better accuracy. However, the Bayes classifier had better results classifying pixels corresponding to populations even with little training data. La detección de zonas de inundación es fundamental para la prevención de desastres, por este motivo en este trabajo se presenta una herramienta computacional desarrollada en MATLAB que ofrece una alternativa a las existentes en el mercado para la clasificación supervisada de imágenes SAR (Synthetic Aperture Radar) de zonas de inundación. En particular se usaron diferentes métodos de clasificación para seleccionar de acuerdo al desempeño el mejor para el estudio de zonas de inundación en Colombia.Los datos de entrenamiento fueron generados con los resultados de las segmentaciones Fuzzy-Clustering, K-means y Region-Growing sobre imágenes SAR de zonas de inundación. Los métodos de clasificación implementados fueron un clasificador basado en el método Bayesiano y un clasificador basado en máquinas de vectores de soporte (SVM). Para evaluar el desempeño de los clasificadores se utilizaron índices como la exactitud total, la exactitud dependiendo del usuario, el índice Kappay R’. De acuerdo a los resultados el clasificador basado en máquinas de soporte presenta mayor exactitud; sin embargo, el clasificador bayesiano se desempeña mejor clasificando pixeles que corresponden a poblaciones, aun con pocos datos de entrenamiento. UNIVERSIDAD ANTONIO NARIÑO 2014-09-08 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uan.edu.co/index.php/ingeuan/article/view/365 INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 4 Núm. 8 (2014) 2346-1446 2145-0935 spa https://revistas.uan.edu.co/index.php/ingeuan/article/view/365/305 https://creativecommons.org/licenses/by-nc-sa/4.0
spellingShingle SAR
Clasificación
Segmentación
imágenes de zonas de inundación
SAR
Classification
Segmentation
flood areas imagery
Avendaño Pérez, Jonathan
Parra Plazas, Jaime Alberto
Bayona, Jhon Fredy
Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastres
title Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastres
title_alt Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention
title_full Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastres
title_fullStr Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastres
title_full_unstemmed Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastres
title_short Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastres
title_sort segmentacion y clasificacion de imagenes sar en zonas de inundacion en colombia una herramienta computacional para prevencion de desastres
topic SAR
Clasificación
Segmentación
imágenes de zonas de inundación
SAR
Classification
Segmentation
flood areas imagery
topic_facet SAR
Clasificación
Segmentación
imágenes de zonas de inundación
SAR
Classification
Segmentation
flood areas imagery
url https://revistas.uan.edu.co/index.php/ingeuan/article/view/365
work_keys_str_mv AT avendanoperezjonathan segmentationandclassificationofsarimageryonfloodzonesincolombiaacomputingtoolfordisasterprevention
AT parraplazasjaimealberto segmentationandclassificationofsarimageryonfloodzonesincolombiaacomputingtoolfordisasterprevention
AT bayonajhonfredy segmentationandclassificationofsarimageryonfloodzonesincolombiaacomputingtoolfordisasterprevention
AT avendanoperezjonathan segmentacionyclasificaciondeimagenessarenzonasdeinundacionencolombiaunaherramientacomputacionalparaprevenciondedesastres
AT parraplazasjaimealberto segmentacionyclasificaciondeimagenessarenzonasdeinundacionencolombiaunaherramientacomputacionalparaprevenciondedesastres
AT bayonajhonfredy segmentacionyclasificaciondeimagenessarenzonasdeinundacionencolombiaunaherramientacomputacionalparaprevenciondedesastres
  • Editorial
  • CRAI
  • Repositorio
  • Libros