Acerca de los (des)acuerdos-aritméticos e hipótesis heurísticas entorno a un problema no rutinario diofántico (de aula)
The Greeks introduced the "mathematical" under the determination of: things, as they arise and present themselves; things as they are produced by hand by man, and are present as such; Things, insofar as they are in use and in permanent disposition, can be stones and similar things, or expr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Digital |
Language: | spa |
Published: |
UNIVERSIDAD ANTONIO NARIÑO
2023
|
Subjects: | |
Online Access: | https://revistas.uan.edu.co/index.php/sifored/article/view/1697 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1812645125738725376 |
---|---|
author | Ávila-Hernández, Óscary González-Calderón, William Ávila-Rodríguez, Federico |
author_facet | Ávila-Hernández, Óscary González-Calderón, William Ávila-Rodríguez, Federico |
author_sort | Ávila-Hernández, Óscary |
collection | OJS |
description | The Greeks introduced the "mathematical" under the determination of: things, as they arise and present themselves; things as they are produced by hand by man, and are present as such; Things, insofar as they are in use and in permanent disposition, can be stones and similar things, or expressly manufactured things with which we deal, whether we define them, use them or transform them, or whether we only contemplate them (Heidegger, 1975). Regarding deep disagreements, Robert J. Fogelin asks in his work: What happens to arguments when the context is neither normal nor close to normal? and under this panorama he dares to say that the argumentative context becomes less normal, and argumentation to this extent becomes impossible, and he tries to leave – initially – for said event by the way, that the conditions for argumentation do not exist, and that The language of argument may persist, but it ends up being useless since it appeals to something that does not exist: a shared background of beliefs and preferences. Under a qualitative analysis, and situated in the classroom, the heuristic route is projected to provide a solution to a problem that nests in geometry. |
format | Digital |
id | revistas.uan.edu.co-article-1697 |
institution | Revista MEMORIAS SIFORED |
language | spa |
publishDate | 2023 |
publisher | UNIVERSIDAD ANTONIO NARIÑO |
record_format | ojs |
spelling | revistas.uan.edu.co-article-16972023-11-15T16:27:02Z Acerca de los (des)acuerdos-aritméticos e hipótesis heurísticas entorno a un problema no rutinario diofántico (de aula) Ávila-Hernández, Óscary González-Calderón, William Ávila-Rodríguez, Federico renovación curricular educación básica matemáticas razonamiento resolución de problemas Curriculum renewal basic education Mathematics Reasoning Problem solving The Greeks introduced the "mathematical" under the determination of: things, as they arise and present themselves; things as they are produced by hand by man, and are present as such; Things, insofar as they are in use and in permanent disposition, can be stones and similar things, or expressly manufactured things with which we deal, whether we define them, use them or transform them, or whether we only contemplate them (Heidegger, 1975). Regarding deep disagreements, Robert J. Fogelin asks in his work: What happens to arguments when the context is neither normal nor close to normal? and under this panorama he dares to say that the argumentative context becomes less normal, and argumentation to this extent becomes impossible, and he tries to leave – initially – for said event by the way, that the conditions for argumentation do not exist, and that The language of argument may persist, but it ends up being useless since it appeals to something that does not exist: a shared background of beliefs and preferences. Under a qualitative analysis, and situated in the classroom, the heuristic route is projected to provide a solution to a problem that nests in geometry. Los griegos introducen lo «matemático» bajo la determinación de: las cosas, en cuanto surgen y se presentan por sí mismas; las cosas en cuanto son producidas artesanalmente por el hombre, y están presente como tales; las cosas en cuanto están en uso y en permanente disposición, pueden ser piedras y cosas semejantes, o cosas expresamente fabricadas con las que tenemos trato, sea que las definamos usemos o transformemos, o que solo las contemplemos (Heidegger, 1975). Sobre los desacuerdos profundos, Robert J. Fogelin plantea en su trabajo ¿Qué ocurre con los argumentos cuando el contexto no es ni normal ni cerca de lo normal? y bajo este panorama se atreve a decir que el contexto argumentativo se vuelve menos normal, y la argumentación en esta medida se hace imposible, e intenta dejar – inicialmente – para dicho evento por cierto, que las condiciones para la argumentación no existen, y que el lenguaje de la argumentación puede llegar a persistir, pero termina siendo inútil ya que apela a algo que no existe: un trasfondo compartido de creencias y preferencias. Bajo un análisis cualitativo, y situado en el aula, se proyecta la ruta heurística para dar solución a un problema que anida en la geometría. UNIVERSIDAD ANTONIO NARIÑO 2023-11-05 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uan.edu.co/index.php/sifored/article/view/1697 MEMORIAS SIFORED - ENCUENTROS EDUCACIÓN UAN; Núm. 7 (2023): Diálogos intergeneracionales para afrontar los desafíos de la innovación educativa en el siglo XXI 2665-203X spa https://revistas.uan.edu.co/index.php/sifored/article/view/1697/1303 https://creativecommons.org/licenses/by-nc-sa/4.0 |
spellingShingle | renovación curricular educación básica matemáticas razonamiento resolución de problemas Curriculum renewal basic education Mathematics Reasoning Problem solving Ávila-Hernández, Óscary González-Calderón, William Ávila-Rodríguez, Federico Acerca de los (des)acuerdos-aritméticos e hipótesis heurísticas entorno a un problema no rutinario diofántico (de aula) |
title | Acerca de los (des)acuerdos-aritméticos e hipótesis heurísticas entorno a un problema no rutinario diofántico (de aula) |
title_full | Acerca de los (des)acuerdos-aritméticos e hipótesis heurísticas entorno a un problema no rutinario diofántico (de aula) |
title_fullStr | Acerca de los (des)acuerdos-aritméticos e hipótesis heurísticas entorno a un problema no rutinario diofántico (de aula) |
title_full_unstemmed | Acerca de los (des)acuerdos-aritméticos e hipótesis heurísticas entorno a un problema no rutinario diofántico (de aula) |
title_short | Acerca de los (des)acuerdos-aritméticos e hipótesis heurísticas entorno a un problema no rutinario diofántico (de aula) |
title_sort | acerca de los des acuerdos aritmeticos e hipotesis heuristicas entorno a un problema no rutinario diofantico de aula |
topic | renovación curricular educación básica matemáticas razonamiento resolución de problemas Curriculum renewal basic education Mathematics Reasoning Problem solving |
topic_facet | renovación curricular educación básica matemáticas razonamiento resolución de problemas Curriculum renewal basic education Mathematics Reasoning Problem solving |
url | https://revistas.uan.edu.co/index.php/sifored/article/view/1697 |
work_keys_str_mv | AT avilahernandezoscary acercadelosdesacuerdosaritmeticosehipotesisheuristicasentornoaunproblemanorutinariodiofanticodeaula AT gonzalezcalderonwilliam acercadelosdesacuerdosaritmeticosehipotesisheuristicasentornoaunproblemanorutinariodiofanticodeaula AT avilarodriguezfederico acercadelosdesacuerdosaritmeticosehipotesisheuristicasentornoaunproblemanorutinariodiofanticodeaula |