Implementación de un sistema con inteligencia computacional para identificar dificultad respiratoria a partir del procesamiento digital de señales de voz

The developed system incorporates computational intelligence, this allows to identify people with respiratory distress (caused by influenza) in an automatic and non-invasive way, from the digital processing of voice signals, integrating the calculation of acoustic, spectral, temporal and statistical...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fernández Velasco, Sara Isabel, Ramos Casanova, Karen Andrea
Otros Autores: Villamarín Muñoz, Julián Antonio
Formato: Trabajo de grado (Pregrado y/o Especialización)
Lenguaje:spa
Publicado: Universidad Antonio Nariño 2022
Materias:
Acceso en línea:http://repositorio.uan.edu.co/handle/123456789/5974
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The developed system incorporates computational intelligence, this allows to identify people with respiratory distress (caused by influenza) in an automatic and non-invasive way, from the digital processing of voice signals, integrating the calculation of acoustic, spectral, temporal and statistical parameters, which implemented in a client-server architecture, they allow the respective analysis, obtained as a result of the recording of two sustained vowel sounds (vowel "a" and "o"), through the microphone of a mobile device of a Spanish-speaking population group aged between 18 and 49 years old. The results obtained determine that for the detection of respiratory distress, the vowel "a" is more efficient in women with a hit rate of 97.62% and the vowel "o" in men; reaching a hit rate of 96.77%. This system is expected to contribute to new support tools with potential for application in health, to promote biosafety protocols, especially in this context of a Covid-19 pandemic; illness that causes respiratory distress, like the flu.
  • Editorial
  • CRAI
  • Repositorio
  • Libros