Robust Visual Segmentation using RCrR Plane and Mahalanobis Distance

In this paper a robust algorithm against illumination changes for skin detection in images is proposed. A database with 50 controlled condition images and 50 without controlled conditions of people in frontal position showing face, hands and arms was used. Five algorithms to perform color correction...

Full description

Saved in:
Bibliographic Details
Main Authors: Arévalo Casallas, Diego Armando, Castañeda Obando, David Ricardo, Castañeda Fandiño, Jos´é Ignacio
Format: info:eu-repo/semantics/publishedVersion
Language:spa
Published: Universidad Antonio Nariño 2021
Subjects:
Online Access:http://revistas.uan.edu.co/index.php/ingeuan/article/view/389
http://repositorio.uan.edu.co/handle/123456789/3952
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1812647829528641536
author Arévalo Casallas, Diego Armando
Castañeda Obando, David Ricardo
Castañeda Fandiño, Jos´é Ignacio
author_facet Arévalo Casallas, Diego Armando
Castañeda Obando, David Ricardo
Castañeda Fandiño, Jos´é Ignacio
author_sort Arévalo Casallas, Diego Armando
collection DSpace
description In this paper a robust algorithm against illumination changes for skin detection in images is proposed. A database with 50 controlled condition images and 50 without controlled conditions of people in frontal position showing face, hands and arms was used. Five algorithms to perform color correction are evaluated: Simple Correction with Green Channel, Color Channel Compression, Color Channel Expansion, Fixed Reference and Gamma Correction. And four algorithms for segmentation are evaluated as well: RGB Skin Color, Reference Histogram, Euclidean Distance and Mahalanobis Distance. The proposed algorithm uses the Fixed Reference method together with Gamma Correction for color correction and performs the skin segmentation based on an RCrR color plane, found by making the transformation of the images using RGB and YCbCr spaces, finally Mahalanobis Distance is used. An average sensitivity value of 99.36 % and specificity of 84.31 % were obtained as result.
format info:eu-repo/semantics/publishedVersion
id repositorio.uan.edu.co-123456789-3952
institution Repositorio Digital UAN
language spa
publishDate 2021
publisher Universidad Antonio Nariño
record_format dspace
spelling repositorio.uan.edu.co-123456789-39522024-10-09T23:03:10Z Robust Visual Segmentation using RCrR Plane and Mahalanobis Distance Segmentación Visual Robusta utilizando el Plano RCrR y la Distancia de Mahalanobis Arévalo Casallas, Diego Armando Castañeda Obando, David Ricardo Castañeda Fandiño, Jos´é Ignacio Faded photo correction gray world assumption gamma correction illumination skin color segmentation euclidean distance mahalanobis distance histogram Corrección foto descolorida Suposición de mundo gris Corrección gamma iluminación segmentación color de piel Distancia Euclidiana Distancia Mahalanobis Histograma In this paper a robust algorithm against illumination changes for skin detection in images is proposed. A database with 50 controlled condition images and 50 without controlled conditions of people in frontal position showing face, hands and arms was used. Five algorithms to perform color correction are evaluated: Simple Correction with Green Channel, Color Channel Compression, Color Channel Expansion, Fixed Reference and Gamma Correction. And four algorithms for segmentation are evaluated as well: RGB Skin Color, Reference Histogram, Euclidean Distance and Mahalanobis Distance. The proposed algorithm uses the Fixed Reference method together with Gamma Correction for color correction and performs the skin segmentation based on an RCrR color plane, found by making the transformation of the images using RGB and YCbCr spaces, finally Mahalanobis Distance is used. An average sensitivity value of 99.36 % and specificity of 84.31 % were obtained as result. En este artículo se propone un algoritmo robusto ante los cambios de iluminación para la detección de la piel en imágenes,  se utiliza una base de datos que consta de 50 imágenes en condiciones controladas y  50 en condiciones no controladas, las imágenes cuentan con  personas en forma frontal, mostrando rostro, manos, y brazos. Se evalúan 5 algoritmos para realizar corrección de color los cuales son: Corrección sencilla con canal verde, Compresión canal de color, Expansión canal de color, Referencia fija,  Corrección Gamma. Se evalúan 4 algoritmos para segmentación  los cuales son: Color de piel en RGB, Referencia de Histograma, Distancia Euclidiana y Distancia de Mahalanobis. El algoritmo propuesto utiliza el método referencia fija unido al algoritmo de corrección  gamma para  corrección de color y realiza segmentación de la piel a partir de un plano de color RCrR, encontrado  de la transformación de las imágenes utilizando los espacios RGB y YCbCr, finalmente utiliza la distancia de Mahalanobis.  Como resultado se obtiene un valor promedio de sensibilidad igual 99.36% y de especificidad igual 84.31%. 2021-06-16T13:53:12Z 2021-06-16T13:53:12Z 2014-12-20 info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article http://purl.org/coar/version/c_970fb48d4fbd8a85 http://revistas.uan.edu.co/index.php/ingeuan/article/view/389 http://repositorio.uan.edu.co/handle/123456789/3952 spa http://revistas.uan.edu.co/index.php/ingeuan/article/view/389/328 Acceso abierto Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 application/pdf Universidad Antonio Nariño 2346-1446 2145-0935 INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 5 Núm. 9 (2014)
spellingShingle Faded photo correction
gray world assumption
gamma correction
illumination
skin color
segmentation
euclidean distance
mahalanobis distance
histogram
Corrección foto descolorida
Suposición de mundo gris
Corrección gamma
iluminación
segmentación color de piel
Distancia Euclidiana
Distancia Mahalanobis
Histograma
Arévalo Casallas, Diego Armando
Castañeda Obando, David Ricardo
Castañeda Fandiño, Jos´é Ignacio
Robust Visual Segmentation using RCrR Plane and Mahalanobis Distance
title Robust Visual Segmentation using RCrR Plane and Mahalanobis Distance
title_full Robust Visual Segmentation using RCrR Plane and Mahalanobis Distance
title_fullStr Robust Visual Segmentation using RCrR Plane and Mahalanobis Distance
title_full_unstemmed Robust Visual Segmentation using RCrR Plane and Mahalanobis Distance
title_short Robust Visual Segmentation using RCrR Plane and Mahalanobis Distance
title_sort robust visual segmentation using rcrr plane and mahalanobis distance
topic Faded photo correction
gray world assumption
gamma correction
illumination
skin color
segmentation
euclidean distance
mahalanobis distance
histogram
Corrección foto descolorida
Suposición de mundo gris
Corrección gamma
iluminación
segmentación color de piel
Distancia Euclidiana
Distancia Mahalanobis
Histograma
url http://revistas.uan.edu.co/index.php/ingeuan/article/view/389
http://repositorio.uan.edu.co/handle/123456789/3952
work_keys_str_mv AT arevalocasallasdiegoarmando robustvisualsegmentationusingrcrrplaneandmahalanobisdistance
AT castanedaobandodavidricardo robustvisualsegmentationusingrcrrplaneandmahalanobisdistance
AT castanedafandinojoseignacio robustvisualsegmentationusingrcrrplaneandmahalanobisdistance
AT arevalocasallasdiegoarmando segmentacionvisualrobustautilizandoelplanorcrryladistanciademahalanobis
AT castanedaobandodavidricardo segmentacionvisualrobustautilizandoelplanorcrryladistanciademahalanobis
AT castanedafandinojoseignacio segmentacionvisualrobustautilizandoelplanorcrryladistanciademahalanobis
  • Editorial
  • CRAI
  • Repositorio
  • Libros