Ácido docosahexaenoico (DHA) y el resveratrol en el manejo de la angiogénesis a nivel ocular: Revisión bibliográfica
Natural antioxidants such as resveratrol and docosahexaenoic acid (DHA) have been studied for their potential properties in different eye conditions, this has led to the identification of the implementation of resveratrol and DHA in the improvement of retinal pigment epithelium storage in adults, li...
Guardado en:
Autores principales: | , |
---|---|
Otros Autores: | |
Formato: | Trabajo de grado (Pregrado y/o Especialización) |
Lenguaje: | spa |
Publicado: |
Universidad Antonio Nariño
2021
|
Materias: | |
Acceso en línea: | http://repositorio.uan.edu.co/handle/123456789/2667 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
_version_ | 1812647425532231680 |
---|---|
author | Londoño David, Laura María Torres Rivas, Sara Liz |
author2 | Cano Paniagua, Alejandra |
author_facet | Cano Paniagua, Alejandra Londoño David, Laura María Torres Rivas, Sara Liz |
author_sort | Londoño David, Laura María |
collection | DSpace |
description | Natural antioxidants such as resveratrol and docosahexaenoic acid (DHA) have been studied for their potential properties in different eye conditions, this has led to the identification of the implementation of resveratrol and DHA in the improvement of retinal pigment epithelium storage in adults, light-induced retinal degeneration, attenuation of the inflammatory retinal condition and damage from diabetic retinopathy.
The objective of this bibliographic review is to describe the existing evidence of the use of DHA and resveratrol in the management of angiogenesis at the eye level through a bibliographic review, through a review of documents from the last 20 years of scientific societies dedicated to visual health, indexed in the databases, demonstrating the importance and benefits that dha and resveratrol use brings in the management and improvement of eye angiogenesis and its studies on the subject, concluding that they are natural alternatives that contribute to a stoppage or delay in the progression of retinal degenerative diseases, which should be studied more deeply for an expansion of information for greater clinical utility. |
format | Trabajo de grado (Pregrado y/o Especialización) |
id | repositorio.uan.edu.co-123456789-2667 |
institution | Repositorio Digital UAN |
language | spa |
publishDate | 2021 |
publisher | Universidad Antonio Nariño |
record_format | dspace |
spelling | repositorio.uan.edu.co-123456789-26672024-10-09T22:52:42Z Ácido docosahexaenoico (DHA) y el resveratrol en el manejo de la angiogénesis a nivel ocular: Revisión bibliográfica Londoño David, Laura María Torres Rivas, Sara Liz Cano Paniagua, Alejandra Galeano Castañeda, Yadira Bernarda Acido docosahexaenoico (DHA) Resveratrol Angiogénesis ocular Neovascularización 617 optometría Docosahexaenoic acid (DHA) Resveratrol Ocular angiogenesis Neovascularization Natural antioxidants such as resveratrol and docosahexaenoic acid (DHA) have been studied for their potential properties in different eye conditions, this has led to the identification of the implementation of resveratrol and DHA in the improvement of retinal pigment epithelium storage in adults, light-induced retinal degeneration, attenuation of the inflammatory retinal condition and damage from diabetic retinopathy. The objective of this bibliographic review is to describe the existing evidence of the use of DHA and resveratrol in the management of angiogenesis at the eye level through a bibliographic review, through a review of documents from the last 20 years of scientific societies dedicated to visual health, indexed in the databases, demonstrating the importance and benefits that dha and resveratrol use brings in the management and improvement of eye angiogenesis and its studies on the subject, concluding that they are natural alternatives that contribute to a stoppage or delay in the progression of retinal degenerative diseases, which should be studied more deeply for an expansion of information for greater clinical utility. Antioxidantes naturales como el resveratrol y el ácido docosahexaenoico (DHA) han sido estudiados por sus potenciales propiedades en diferentes afecciones oculares, lo cual ha permitido identificar la implementación de resveratrol y DHA en la mejora del almacenamiento del epitelio pigmentario retinal en adultos, la degeneración retiniana inducida por la luz, la atenuación de la condición inflamatoria de la retina y el daño a causa de la retinopatía diabética. El objetivo de esta revisión bibliográfica es Describir la evidencia existente del uso del DHA y resveratrol en el manejo de la angiogénesis a nivel ocular a través de una revisión bibliográfica, mediante una revisión de documentos de los últimos 20 años de sociedades científicas dedicadas a salud visual, indexados en las bases de datos, evidenciando la importancia y beneficios que aporta el uso del DHA y resveratrol en el manejo y mejoría de la angiogénesis ocular y a su vez la poca existencia de estudios sobre el tema, llegando a la conclusión de que son alternativas naturales que contribuyen una detención o retardo en la progresión de enfermedades degenerativas retinianas, que deben ser estudiadas más profundamente para una expansión de la información para mayor utilidad clínica Optómetra Pregrado Presencial 2021-03-04T20:26:32Z 2021-03-04T20:26:32Z 2020-06-02 Trabajo de grado (Pregrado y/o Especialización) Estudio de caso info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_7a1f http://purl.org/coar/version/c_970fb48d4fbd8a85 http://repositorio.uan.edu.co/handle/123456789/2667 Rodríguez Gallo CM, Medina Caballero G, Cabrera Hernández D, Díaz Hernández E. Medicina natural y tradicional. Conocimientos y aplicaciones de enfermería en MINAS-II. Rev Cubana Enferm. 2002;18(3):138–43. Aung T, Qu Z, Kortschak R, Adelson D. Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action. Int J Mol Sci [Internet]. 2017 Mar 17;18(3):656. Available from: http://www.mdpi.com/1422-0067/18/3/656 Cheng C, Li Z, Zhao X, Liao C, Quan J, Bode AM, et al. Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. Eur J Pharmacol [Internet]. 2020 Mar;870:172922. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0014299920300145 Obulesu M. Natural Products in the Treatment of Alzheimer’s Disease. In: Alzheimer’s Disease Theranostics [Internet]. Elsevier; 2019. p. 19–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128164129000045 Li J, Long X, Hu J, Bi J, Zhou T, Guo X, et al. Multiple pathways for natural product treatment of Parkinson’s disease: A mini review. Phytomedicine [Internet]. 2019 Jul 1 [cited 2020 Apr 8];60:152–954. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0944711319301230 Chen D-Q, Hu H-H, Wang Y-N, Feng Y-L, Cao G, Zhao Y-Y. Natural products for the prevention and treatment of kidney disease. Phytomedicine [Internet]. 2018 Nov;50:50–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S094471131830463X Pourang A, Hendricks AJ, Shi VY. Managing dermatology patients who prefer “all natural” treatments. Clin Dermatol [Internet]. 2019 Oct 27 [cited 2020 Apr 8]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0738081X19302019 Dembitsky VM, Dzhemileva L, Gloriozova T, D’yakonov V. Natural and synthetic drugs used for the treatment of the dementia. Biochem Biophys Res Commun [Internet]. 2020 Apr 9 [cited 2020 Apr 8];524(3):772–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X20302060 Chu K-O, Pang C-P. Herbal molecules in eye diseases. Taiwan J Ophthalmol [Internet]. 2014 Sep 1 [cited 2020 Apr 8];4(3):103–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211505614000283 Dinte E, Vostinaru O, Samoila O, Sevastre B, Bodoki E. Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases. Coatings [Internet]. 2020 Jan 1;10(1):36. Available from: https://www.mdpi.com/2079-6412/10/1/36 Johnsen-Soriano S, Genovés JM, Romero B, García-Delpech S, Muriach M, Sancho-Tello M, et al. Estrés oxidativo en la retina de la rata inducido por la administración crónica de etanol: tratamiento con el antioxidante ebselen. Arch Soc Esp Oftalmol [Internet]. 2007 Dec;82(12):757–62. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0365-66912007001200008&lng=en&nrm=iso&tlng=en Mares JA, Millen AE, Lawler TP, Blomme CK. Diet and Supplements in the Prevention and Treatment of Eye Diseases. In: Nutrition in the Prevention and Treatment of Disease [Internet]. Fourth Edi. Elsevier; 2017. p. 393–434. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128029282000199 Doganay S, Firat PG, Cankaya C, Kirimlioglu H. Evaluation of the effects of resveratrol and bevacizumab on experimental corneal alkali burn. Burns [Internet]. 2013 Mar;39(2):326–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0305417912002367 Chiang H, Hemmati H. Treatment of Corneal Neovascularization [Internet]. American Academy of Ophthalmology. 2013. p. 35,36. Available from: https://www.aao.org/eyenet/article/treatment-of-corneal-neovascularization Chang J-H, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol [Internet]. 2001 Aug;12(4):242–9. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage& an=00055735-200108000-00002 Brantley MA, Sternberg P. Mechanisms of Oxidative Stress in Retinal Injury. In: Retina [Internet]. Fifth Edit. Elsevier; 2013. p. 517–28. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781455707379000229 World Health Organisation. World report on vision [Internet]. Vol. 214, World health Organisation. 2019. Available from: https://www.who.int/publications-detail/world-report-on-vision Chen Y, Meng J, Li H, Wei H, Bi F, Liu S, et al. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Exp Eye Res [Internet]. 2019 Apr;181:356–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014483518302732 Kubota S, Kurihara T, Ebinuma M, Kubota M, Yuki K, Sasaki M, et al. Resveratrol Prevents Light-Induced Retinal Degeneration via Suppressing Activator Protein-1 Activation. Am J Pathol [Internet]. 2010 Oct;177(4):1725–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002944010602258 Pasovic L, Eidet JR, Lyberg T, Messelt EB, Aabel P, Utheim TP. Antioxidants Improve the Viability of Stored Adult Retinal Pigment Epithelial-19 Cultures. Ophthalmol Ther [Internet]. 2014 Dec 29;3(1–2):49–61. Available from: http://link.springer.com/10.1007/s40123-014-0024-9 Vang O, Ahmad N, Baile CA, Baur JA, Brown K, Csiszar A, et al. What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol. Vina J, editor. PLoS One [Internet]. 2011 Jun 16;6(6):e19881. Available from: http://dx.plos.org/10.1371/journal.pone.0019881 Brâkenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J [Internet]. 2001 Aug 8;15(10):1798–800. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1096/fj.01-0028fje Contín MA, Arietti MM, Benedetto MM, Bussi C, Guido ME. Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals. Mol Vis [Internet]. 2013;19:1614–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23901245 Jaadane I, Villalpando Rodriguez GE, Boulenguez P, Chahory S, Carré S, Savoldelli M, et al. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. J Cell Mol Med [Internet]. 2017 Dec;21(12):3453–66. Available from: http://doi.wiley.com/10.1111/jcmm.13255 Jaadane I, Boulenguez P, Chahory S, Carré S, Savoldelli M, Jonet L, et al. Retinal damage induced by commercial light emitting diodes (LEDs).Free Radic Biol Med [Internet]. 2015 Jul;84:373–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891584915001586 Domej W, Oetll K, Renner W. Oxidative stress and free radicals in COPD – implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis [Internet]. 2014 Oct;9:1207. Available from: http://www.dovepress.com/oxidative-stress-and-free-radicals-in-copd- ndash-implications-and-rele-peer-reviewed-article-COPD Abu-Amero K, Kondkar A, Chalam K. Resveratrol and Ophthalmic Diseases. Nutrients [Internet]. 2016 Apr 5;8(4):200. Available from: http://www.mdpi.com/2072-6643/8/4/200 Wei J, Gronert K. The role of pro-resolving lipid mediators in ocular diseases. Mol Aspects Med [Internet]. 2017 Dec;58:37–43. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0098299717300225 He J, Bazan HEP. Omega-3 fatty acids in dry eye and corneal nerve regeneration after refractive surgery. Prostaglandins, Leukot Essent Fat Acids [Internet]. 2010 Apr;82(4–6):319–25. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0952327810000487 Suvarna V, Sarkar M, Chaubey P, Murahari M, Sangave PC. Role of Natural Products in Glaucoma Management. In: Handbook of Nutrition, Diet, and the Eye [Internet]. 2nd ed. Elsevier; 2019. p. 221–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128152454000132 Hua J, Guerin KI, Chen J, Michán S, Stahl A, Krah NM, et al. Resveratrol Inhibits Pathologic Retinal Neovascularization in Vldlr −/− Mice. Investig Opthalmology Vis Sci [Internet]. 2011 Apr 25;52(5):2809. Available from: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.10-6496 Liu Z, Wu Z, Li J, Marmalidou A, Zhang R, Yu M. Protective effect of resveratrol against light-induced retinal degeneration in aged SAMP8 mice. Oncotarget [Internet]. 2017 Sep 12;8(39). Available from: http://www.oncotarget.com/fulltext/19473 Souied EH, Delcourt C, Querques G, Bassols A, Merle B, Zourdani A, et al. Oral Docosahexaenoic Acid in the Prevention of Exudative Age-Related Macular Degeneration. Ophthalmology [Internet]. 2013 Aug;120(8):1619–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0161642013000079 Merle BMJ, Benlian P, Puche N, Bassols A, Delcourt C, Souied EH. Circulating Omega-3 Fatty Acids and Neovascular Age-Related Macular Degeneration. Investig Opthalmology Vis Sci [Internet]. 2014 Mar 28;55(3):2010. Available from: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.14-13916 Richer S, Ulanski L, Popenko NA, Pratt SG, Hitchmoth D, Chous P, et al. Age-related Macular Degeneration Beyond the Age-related Eye Disease Study II. Adv Ophthalmol Optom [Internet]. 2016 Aug;1(1):335–69. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452176016300038 Saxena S. Antioxidants and Age-related Macular Degeneration. In: Focus on Macular Diseases [Internet]. Jaypee Brothers Medical Publishers (P) Ltd.; 2007. p. 261–261. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128152454000065 Hellström A, Smith LEH, Dammann O. Retinopathy of prematurity. Lancet [Internet]. 2013 Oct;382(9902):1445–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673613601786 Cai J, Boulton M. The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye [Internet]. 2002 May 28;16(3):242–60. Available from: http://www.nature.com/articles/6700133 Perdriel G. Diabetic Retinopathy [Internet]. Duh EJ, editor. Vol. 48, Therapeutique (La Semaine des hopitaux). Totowa, NJ: Humana Press; 2008. 615–617 p. Available from: http://link.springer.com/10.1007/978-1-59745-563-3 Jin Y, Arita M, Zhang Q, Saban DR, Chauhan SK, Chiang N, et al. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Investig Ophthalmol Vis Sci [Internet]. 2009 Oct 1;50(10):4743–52. Available from: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.08-2462 Gong Y, Fu Z, Liegl R, Chen J, Hellström A, Smith LEH. ω-3 and ω-6 long-chain PUFAs and their enzymatic metabolites in neovascular eye diseases. Am J Clin Nutr [Internet]. 2017 Jul;106(1):16–26. Available from: https://academic.oup.com/ajcn/article/106/1/16-26/4634038 Ustáriz-gonzález O, Furno-sola F, Quiroz-mercado H. Angiogénesis ocular. Revisión del tema. Rev Mex Oftalmol [Internet]. 2006;80(5):268–71. Available from: https://www.medigraphic.com/pdfs/revmexoft/rmo-2006/rmo065h.pdf Sulaiman RS, Basavarajappa HD, Corson TW. Natural product inhibitors of ocular angiogenesis. Exp Eye Res [Internet]. 2014 Dec;129:161–71. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014483514002668 Ghasemi Falavarjani K, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye [Internet]. 2013 Jul 31;27(7):787–94. Available from: http://www.nature.com/articles/eye2013107 Dong A, Xie B, Shen J, Yoshida T, Yokoi K, Hackett SF, et al. Oxidative stress promotes ocular neovascularization. J Cell Physiol [Internet]. 2009 Jun;219(3):544–52. Available from: http://doi.wiley.com/10.1002/jcp.21698 Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Brockhurst RJ, Hayes KC, et al. Clinical Trial of Lutein in Patients With Retinitis Pigmentosa Receiving Vitamin A. Arch Ophthalmol [Internet]. 2010 Apr 1;128(4):403. Available from: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archophthalmol.2010.32 Sandre PC, de Velasco PC, Serfaty CA. The Impact of Low Omega-3 Fatty Acids Diet on the Development of the Visual System. In: Handbook of Nutrition, Diet, and the Eye [Internet]. 2nd ed. Elsevier; 2019. p.369–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128152454000235 Serini S, Cassano R, Facchinetti E, Amendola G, Trombino S, Calviello G. Anti-Irritant and Anti-Inflammatory Effects of DHA Encapsulated in Resveratrol-Based Solid Lipid Nanoparticles in Human Keratinocytes. Nutrients [Internet]. 2019 Jun 21;11(6):1400. Available from: https://www.mdpi.com/2072-6643/11/6/1400 Huang DD, Shi G, Jiang Y, Yao C, Zhu C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications [Internet]. Vol. 125, Biomedicine and Pharmacotherapy. Elsevier; 2020. p.109767. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332219353892 Ahmad I, Hoda M. Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci [Internet]. 2020 Mar;245. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0024320520300977 Kubota S, Kurihara T, Mochimaru H, Satofuka S, Noda K, Ozawa Y, et al. Prevention of Ocular Inflammation in Endotoxin-Induced Uveitis with Resveratrol by Inhibiting Oxidative Damage and Nuclear Factor–κB Activation. Investig Opthalmology Vis Sci [Internet]. 2009 Jul 1;50(7):3512. Available from: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.08-2666 Chen W, Esselman WJ, Jump DB, Busik J V. Anti-inflammatory Effect of Docosahexaenoic Acid on Cytokine-Induced Adhesion Molecule Expression in Human Retinal Vascular Endothelial Cells. Investig Opthalmology Vis Sci [Internet]. 2005 Nov 1;46(11):4342. Available from: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.05-0601 Nagaoka T, Hein TW, Yoshida A, Kuo L. Resveratrol, a component of red wine, elicits dilation of isolated porcine retinal arterioles: Role of nitric oxide and potassium channels. Investig Ophthalmol Vis Sci [Internet]. 2007 Sep 1;48(9):4232–9. Available from:http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.07-0094 Zhang T-T, Xu J, Wang Y-M, Xue C-H. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res [Internet]. 2019 Jul;75:100997. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163782719300402 Yang R-H, Lin J, Hou X-H, Cao R, Yu F, Liu H-Q, et al. Effect of docosahexaenoic acid on hippocampal neurons in high-glucose condition: Involvement of PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways. Neuroscience [Internet]. 2014 Aug;274:218–28. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0306452214004424 Zarrouk A, Nury T, Samadi M, O’Callaghan Y, Hammami M, O’Brien NM, et al. Effects of cholesterol oxides on cell death induction and calcium increase in human neuronal cells (SK-N-BE) and evaluation of the protective effects of docosahexaenoic acid (DHA; C22:6 n-3). Steroids [Internet]. 2015 Jul;99(PB):238–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0039128X15000380 Wang M, Zhang XN. Docosahexaenoic acid protectsneuronal and vascular of retinal ganglion cells from retinal ischemia and reperfusion injury inrats. Int J Clin Exp Med. 2016;9(4):7072–9. Hong S-H, Khoutorova L, Bazan NG, Belayev L. Docosahexaenoic acid improves behavior and attenuates blood–brain barrier injury induced by focal cerebral ischemia in rats. Exp Transl Stroke Med [Internet]. 2015 Dec 28;7(1):3. Available from: http://www.etsmjournal.com/content/7/1/3 Kielar ML. Docosahexaenoic Acid Ameliorates Murine Ischemic Acute Renal Failure and Prevents Increases in mRNA Abundance for both TNF-and Inducible Nitric Oxide Synthase. J Am Soc Nephrol [Internet]. 2003 Feb 1;14(2):389–96. Available from: http://www.jasn.org/cgi/doi/10.1097/01.ASN.0000045047.44107.0B Schunck W-H, Konkel A, Fischer R, Weylandt K-H. Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Ther [Internet]. 2018 Mar;183:177–204. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163725817302668 SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res [Internet]. 2005 Jan;24(1):87–138. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1350946204000527 Fernández-Araque A, Giaquinta Aranda A, Laudo Pardo C, Rojo Aragüés A. Los antioxidantes en el proceso de patologías oculares. Nutr Hosp [Internet]. 2017 Mar 30;34(2):469. Available from: http://revista.nutricionhospitalaria.net/index.php/nh/article/view/420 Goutham G, Manikandan R, Beulaja M, Thiagarajan R, Arulvasu C, Arumugam M, et al. A focus on resveratrol and ocular problems, especially cataract: From chemistry to medical uses and clinical relevance. Biomed Pharmacother [Internet]. 2017 Feb;86:232–41. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332216320509 Jarratt RA, Bartlett H, Eperjesi F. Retinal Effects of Resveratrol. US Ophthalmic Rev [Internet]. 2013;06(02):132. Available from: http://www.touchophthalmology.com/articles/retinal-effects-resveratrol Levin LA, Albert DM. Ocular Disease [Internet]. Ocular Disease: Mechanisms and Management. Elsevier; 2010. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780702029837X00010 Bungau S, Abdel-Daim MM, Tit DM, Ghanem E, Sato S, Maruyama-Inoue M, et al. Health Benefits of Polyphenols and Carotenoids in Age-Related Eye Diseases. Oxid Med Cell Longev [Internet]. 2019 Feb 12;2019:1–22. Available from: https://www.hindawi.com/journals/omcl/2019/9783429/ Oak M-H, El Bedoui J, Schini-Kerth VB. Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem [Internet]. 2005 Jan;16(1):1–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0955286304001792 Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet [Internet]. 2012 May;379(9827):1728–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22559899 Hennig R, Goepferich A. Nanoparticles for the treatment of ocular neovascularizations. Eur J Pharm Biopharm [Internet]. 2015 Sep;95(March):294–306. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939641115001095 Cabrera MP, Chihuailaf RH. Antioxidants and the Integrity of Ocular Tissues. Vet Med Int [Internet]. 2011;2011:1–8. Available from: http://www.hindawi.com/journals/vmi/2011/905153/ Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging [Internet]. 2007;2(2):219–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18044138 Bosch-Morell F, Romá J, Marı́n N, Romero B, Rodriguez-Galietero A, Johnsen-Soriano S, et al. Role of oxygen and nitrogen species in experimental uveitis: anti-inflammatory activity of the synthetic antioxidant ebselen. Free Radic Biol Med [Internet]. 2002 Sep;33(5):669–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891584902009541 Miranda M, Muriach M, Johnsen S, Bosch-Morell F, Araiz J, Romá J, et al. Estrés oxidativo en un modelo de retinopatía diabética experimental: tratamiento con antioxidantes. Arch Soc Esp Oftalmol [Internet]. 2004 Jun;79(6):289–94. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0365-66912004000600007&lng=en&nrm=iso&tlng=en Gupta RC. Handbook of Toxicology of Chemical Warfare Agents [Internet]. Handbook of Toxicology of Chemical Warfare Agents: Second Edition. Elsevier; 2015. 1–1184 p. Available from: https://linkinghub.elsevier.com/retrieve/pii/C20130154025 Yar AS, Menevse S, Dogan I, Alp E, Ergin V, Cumaoglu A, et al. Investigation of Ocular Neovascularization–Related Genes and Oxidative Stress in Diabetic Rat Eye Tissues After Resveratrol Treatment. J Med Food [Internet]. 2012 Apr;15(4):391–8. Available from:http://www.liebertpub.com/doi/10.1089/jmf.2011.0135 Pintea A, Rugină D. Resveratrol and the Human Retina. In: Handbook of Nutrition, Diet, and the Eye [Internet]. Elsevier; 2019. p. 127–45. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128152454000089 Kim WT, Suh ES. Retinal Protective Effects of Resveratrol via Modulation of Nitric Oxide Synthase on Oxygen-induced Retinopathy. Korean J Ophthalmol [Internet]. 2010;24(2):108. Available from: https://synapse.koreamed.org/DOIx.php?id=10.3341/kjo.2010.24.2.108 Kaneko H, Anzai T, Morisawa M, Kohno T, Nagai T, Anzai A, et al. Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization. Atherosclerosis [Internet]. 2011 Aug;217(2):350–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021915011003030 Tabrizi R, Tamtaji OR, Lankarani KB, Akbari M, Dadgostar E, Dabbaghmanesh MH, et al. The effects of resveratrol intake on weight loss: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr [Internet]. 2020 Feb 4;60(3):375–90. Available from: https://www.tandfonline.com/doi/full/10.1080/10408398.2018.1529654 Nagai N, Kubota S, Tsubota K, Ozawa Y. Resveratrol prevents the development of choroidal neovascularization by modulating AMP-activated protein kinase in macrophages and other cell types. J Nutr Biochem [Internet]. 2014 Nov;25(11):1218–25. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0955286314001326 Repossi G, Das UN, Eynard AR. Molecular Basis of the Beneficial Actions of Resveratrol. Arch Med Res [Internet]. 2020 Feb;17. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0188440919313293 O’CONNOR BA, CARMAN J, ECKERT K, TUCKER G, GIVNEY R, CAMERON S. Does using potting mix make you sick? Results from a Legionella longbeachae case-control study in South Australia. Epidemiol Infect [Internet]. 2007 Jan 19;135(1):34–9. Available from: https://www.cambridge.org/core/product/identifier/S095026880600656X/type/journal_article Tuo J, Ross RJ, Herzlich AA, Shen D, Ding X, Zhou M, et al. A high omega-3 fatty acid diet reduces retinal lesions in a murine model of macular degeneration. Am J Pathol [Internet]. 2009 Aug;175(2):799–807. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002944010605913 Souied EH, Aslam T, Garcia-Layana A, Holz FG, Leys A, Silva R, et al. Omega-3 Fatty Acids and Age-Related Macular Degeneration. Ophthalmic Res [Internet]. 2015 Nov 27;55(2):62–9. Available from: https://www.karger.com/Article/FullText/441359 Park B, Corson TW. Soluble Epoxide Hydrolase Inhibition for Ocular Diseases: Vision for the Future. Front Pharmacol [Internet]. 2019 Feb 7;10:1–9. Available from: https://www.frontiersin.org/article/10.3389/fphar.2019.00095/full Ung L, Pattamatta U, Carnt N, Wilkinson-Berka JL, Liew G, White AJR. Oxidative stress and reactive oxygen species: A review of their role in ocular disease [Internet]. Vol. 131, Clinical Science. 2017. p. 2865–83. Available from: https://portlandpress.com/clinsci/article/131/24/2865/71822/Oxidative-stress-and-reactive-oxygen-species-a Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci [Internet]. 2006 May;29(5):263–71. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166223606000683 García Lozano I, López García S, Elosua de Juán I. Actualización en el manejo de la degeneración macular asociada a la edad. Rev Esp Geriatr Gerontol [Internet]. 2012 Sep;47(5):214–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0211139X12000091 Mares JA. Healthy Lifestyles Related to Subsequent Prevalence of Age- Related Macular Degeneration. Arch Ophthalmol [Internet]. 2011 Apr 11;129(4):470. Available from: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archophthalmol.2010.314 Pinazo-Durán MD, Zanón-Moreno V, Vinuesa-Silva I. Implicaciones de los ácidos grasos en la salud ocular. Arch Soc Esp Oftalmol [Internet]. 2008 Jul;83(7):401–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18592438 Sáenz Chávez PL, Garza Ocañas L, Badillo Castañeda CT, Tamez de la O EJ, Triana Verástegui J. Tolerabilidad del resveratrol y efectos sobre parámetros bioquímicos sanguíneos [Internet]. Vol. 45, Revista mexicana de ciencias farmacéuticas. scielomx; 2014. p. 1–7. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952014000400008 Masís Borge A, Vega Solano M, Sánchez Valverde P. El Resveratrol Y Sus Posibles Usos Como Nueva. Rev Médica Costa Rica y Centroam [Internet]. 2013;(608):679–84. Available from: https://www.medigraphic.com/pdfs/revmedcoscen/rmc-2013/rmc134t.pdf Castellanos T L, Rodriguez D M. El efecto de omega 3 en la salud humana y consideraciones en la ingesta [Internet]. Vol. 42, Revista chilena de nutrición. scielocl; 2015. p. 90–5. Available from: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-75182015000100012 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ spa Acceso abierto Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf Universidad Antonio Nariño Optometría Facultad de Optometría Medellín |
spellingShingle | Acido docosahexaenoico (DHA) Resveratrol Angiogénesis ocular Neovascularización 617 optometría Docosahexaenoic acid (DHA) Resveratrol Ocular angiogenesis Neovascularization Londoño David, Laura María Torres Rivas, Sara Liz Ácido docosahexaenoico (DHA) y el resveratrol en el manejo de la angiogénesis a nivel ocular: Revisión bibliográfica |
title | Ácido docosahexaenoico (DHA) y el resveratrol en el manejo de la angiogénesis a nivel ocular: Revisión bibliográfica |
title_full | Ácido docosahexaenoico (DHA) y el resveratrol en el manejo de la angiogénesis a nivel ocular: Revisión bibliográfica |
title_fullStr | Ácido docosahexaenoico (DHA) y el resveratrol en el manejo de la angiogénesis a nivel ocular: Revisión bibliográfica |
title_full_unstemmed | Ácido docosahexaenoico (DHA) y el resveratrol en el manejo de la angiogénesis a nivel ocular: Revisión bibliográfica |
title_short | Ácido docosahexaenoico (DHA) y el resveratrol en el manejo de la angiogénesis a nivel ocular: Revisión bibliográfica |
title_sort | acido docosahexaenoico dha y el resveratrol en el manejo de la angiogenesis a nivel ocular revision bibliografica |
topic | Acido docosahexaenoico (DHA) Resveratrol Angiogénesis ocular Neovascularización 617 optometría Docosahexaenoic acid (DHA) Resveratrol Ocular angiogenesis Neovascularization |
url | http://repositorio.uan.edu.co/handle/123456789/2667 |
work_keys_str_mv | AT londonodavidlauramaria acidodocosahexaenoicodhayelresveratrolenelmanejodelaangiogenesisanivelocularrevisionbibliografica AT torresrivassaraliz acidodocosahexaenoicodhayelresveratrolenelmanejodelaangiogenesisanivelocularrevisionbibliografica |