Efecto del tiempo de envejecido en la estructura cristalina y las propiedades mecánicas del aluminio 6061

In this project, an analysis of the effect of aging time on the crystalline structure and mechanical properties of aluminum alloy 6061 was carried out. Aging is one of the 3 stages which is part a set of more complex heat treatments known as age hardening. The sequence used in this work was: First,...

Full description

Saved in:
Bibliographic Details
Main Authors: Bonilla Canizales, Andrés Felipe, Gordillo Medina, Lainer Fresned
Other Authors: Jiménez Forero, Hernando Augusto
Format: Trabajo de grado (Pregrado y/o Especialización)
Language:spa
Published: Universidad Antonio Nariño 2021
Subjects:
Online Access:http://repositorio.uan.edu.co/handle/123456789/2211
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1812647495732297728
author Bonilla Canizales, Andrés Felipe
Gordillo Medina, Lainer Fresned
author2 Jiménez Forero, Hernando Augusto
author_facet Jiménez Forero, Hernando Augusto
Bonilla Canizales, Andrés Felipe
Gordillo Medina, Lainer Fresned
author_sort Bonilla Canizales, Andrés Felipe
collection DSpace
description In this project, an analysis of the effect of aging time on the crystalline structure and mechanical properties of aluminum alloy 6061 was carried out. Aging is one of the 3 stages which is part a set of more complex heat treatments known as age hardening. The sequence used in this work was: First, the temperature was raised to obtain a homogeneous phase on the sample at a temperature of 530 ºC for 2 hours, this step is called a solution treatment. In the second stage, referred as quenching the material in the solid solution state was rapidly cooled in water to room temperature and allowed to rest for 4 hours. In the third stage, the material was heated to a temperature of 175 ºC and kept at different aging times. This aging process, also called maturation, has been reported to improve the mechanical properties of 6061 aluminum and produce changes in its crystalline structure. The different maturation times evaluated were 15 min, 90 min, 8 am and 6 pm. Changes in tensile strength were evaluated under standard ASTM E8M. Likewise, the variation in the material hardness was evaluated for different maturation times, the performance of Vickers microindentation hardness tests under standard ASTM E384. In each test was evidenced the specimens got their maximum hardening at 18 hours of aging.
format Trabajo de grado (Pregrado y/o Especialización)
id repositorio.uan.edu.co-123456789-2211
institution Repositorio Digital UAN
language spa
publishDate 2021
publisher Universidad Antonio Nariño
record_format dspace
spelling repositorio.uan.edu.co-123456789-22112024-10-09T22:54:08Z Efecto del tiempo de envejecido en la estructura cristalina y las propiedades mecánicas del aluminio 6061 Bonilla Canizales, Andrés Felipe Gordillo Medina, Lainer Fresned Jiménez Forero, Hernando Augusto Aluminio 6061 Propiedades mecánicas Refinamiento Rietveld Tratamientos térmicos Método de Williamson-Hall Difracción de rayos X 6061 aluminium Mechanical properties Rietveld refinement Heat treatments Williamson-Hall method X ray diffraction In this project, an analysis of the effect of aging time on the crystalline structure and mechanical properties of aluminum alloy 6061 was carried out. Aging is one of the 3 stages which is part a set of more complex heat treatments known as age hardening. The sequence used in this work was: First, the temperature was raised to obtain a homogeneous phase on the sample at a temperature of 530 ºC for 2 hours, this step is called a solution treatment. In the second stage, referred as quenching the material in the solid solution state was rapidly cooled in water to room temperature and allowed to rest for 4 hours. In the third stage, the material was heated to a temperature of 175 ºC and kept at different aging times. This aging process, also called maturation, has been reported to improve the mechanical properties of 6061 aluminum and produce changes in its crystalline structure. The different maturation times evaluated were 15 min, 90 min, 8 am and 6 pm. Changes in tensile strength were evaluated under standard ASTM E8M. Likewise, the variation in the material hardness was evaluated for different maturation times, the performance of Vickers microindentation hardness tests under standard ASTM E384. In each test was evidenced the specimens got their maximum hardening at 18 hours of aging. En este proyecto se realizó un análisis del efecto del tiempo de envejecido en la estructura cristalina y propiedades mecánicas de la aleación de aluminio 6061. El envejecido es una de las 3 etapas de las que consta una serie de tratamientos térmicos más complejo denominado bonificado. La secuencia que se usó en este trabajo fue: Primero, se elevó la temperatura para obtener una fase homogénea en la muestra a una temperatura de 530 °C durante 2 horas, esta etapa se denomina tratamiento de solubilización. En la segunda etapa, denominada temple, el material en estado de solución solida se enfrió rápidamente en agua hasta la temperatura ambiente y se dejó reposar por 4 horas. En la tercera etapa, se calentó el material hasta una temperatura de 175 °C y se mantuvo a diferentes tiempos de envejecido. Este proceso de envejecido también llamado maduración ha reportado mejorar las propiedades mecánicas del aluminio 6061 y produce cambios en su estructura cristalina. Los diferentes tiempos de maduración que se evaluaron fueron de 15 min, 90min, 8h y 18h. Los cambios en la resistencia a la tracción fueron analizados bajo la norma ASTM E8M. Así mismo se evaluó la variación de la dureza del material para diferentes tiempos de maduración, realizando ensayos de dureza de microindentación en escala Vickers bajo la norma ASTM E384. En ambas pruebas se evidenció que el máximo endurecimiento se logró a las 18 horas. Otro Ingeniero(a) Mecánico(a) Pregrado Costo total del proyecto $1,350,000.00. Financiación propia $400,000.00. Financiación UAN $950.000. Presencial 2021-03-02T14:06:18Z 2021-03-02T14:06:18Z 2020-07-21 Trabajo de grado (Pregrado y/o Especialización) info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_7a1f http://purl.org/coar/version/c_970fb48d4fbd8a85 http://repositorio.uan.edu.co/handle/123456789/2211 ASM International. (1997). ASM Specialty Handbook: Heat-Resistant Materials. ASM International. ALCERMAS. (29 de Febrero de 2020). ALCER MAS. Obtenido de https://www.alacermas.com/img/galeria/files/aluminio/chapa_6061_aluminio(1).pdf aluminio, P. d. (22 de Febrero de 2020). PERFILESDEALUMINIO.NET. Obtenido de https://perfilesdealuminio.net/articulo/icual-es-la-diferencia-entre-aluminio-6061-vs-6063/11 ALUMINIOS Y METALES UNICORNIO. (29 de Febrero de 2020). ALUMINIOS Y METALES UNICORNIO. Obtenido de http://www.aluminiosymetalesunicornio.com.mx/6061.html Aouabdia, Y., Boubertakh, A., & Hamamda, S. (2010). Precipitation kinetics of the hardening phase in two 6061 aluminium alloys. Materials Letters, 64(3), 353-356. arvengtraining. (22 de Febrero de 2020). arveng training & engineering. Obtenido de https://arvengtraining.com/que-son-las-aplicaciones-criogenicas/ Askeland, D. R., Fulay, P. P., & Wright, W. J. (2012). Ciencia e ingeniería de los materiales. Mexico D.F.: Cengage Learning Editores, S.A. ASM INTERNATIONAL. (1990). ASM HANDBOOK VOL 2 Properties and Selection: Nonferrous Alloys and Special-Purpuse Materials. ASM INTERNATIONAL. (1991). ASM HANDBOOK VOL 4 HEAT TREATING. ASM INTERNATIONAL. (1992). ASM HANDBOOK VOL 2 Properties and Selection: Nonferrus Alloys and Special-Porpuse Materials. ASTM INTERNATIONAL. (1 de Junio de 2017). Norma E384: Standard Test Method for Microindentation Hardness of Materials. Autocasión. (22 de Febrero de 2020). Autocasión. Obtenido de https://www.autocasion.com/actualidad/reportajes/la-corrosion-del-aluminio AVNER, S. H. (1988). Introduccion a la metalurgia fisica. Mexico: Mc Graw Hill. Blake, A. J., Clegg, W., Cole, J. M., Evans, J. S., Main, P., Parsons, S., & Watkin, D. J. (2009). Crystal Structure Analysis Principles and Practice. New York: Oxford University Press Inc. Búa, M. T. (22 de Febrero de 2020). edu.xunta. Obtenido de https://www.edu.xunta.es/espazoAbalar/sites/espazoAbalar/files/datos/1464947174/contido/532_metales_ligeros.html Buchanan, K., Ribis, J., Garnier, J., & Colas, K. (2016). Identification of monoclinic θ-phase dispersoids in a 6061 aluminium alloy. Philosophical Magazine Letters, 121-131. Callister, W. D. (2000). Introducción a la Ciencia e Ingeniería de los Materiales. Bogota: REVERTÉ, S.A. Casagrande, S. P., & Blanco, R. C. (20 de Mayo de 2020). UNIVERSIDAD NACIONAL DE INGENIERÍA SISTEMA DE BIBLIOTECAS. Obtenido de http://www.bibliotecacentral.uni.edu.pe/pdfs/REVCIUNI/1,2005/art_0001.pdf Chen, F., & Tang, B. (2019). X-RAY DIFFRACTION ANALYSIS OF ULTRASOUND-TREATED ALLOY 6061 BY RIETVELD METHOD. Metal Science and Heat Treatment, 60(9), 574-579. COWLEY, J. M. (03 de Mayo de 2020). ScienceDirect. Obtenido de https://www.sciencedirect.com/topics/physics-and-astronomy/diffuse-scattering Cullity, B. D. (1956). ELEMENTS OF X-RAY DIFFRACTION. United States of America: ADDISON-WESLEY PUBLISHING COMPANY. Dini, G., Ueji, R., Najafizadeh, A., & Monir-Vaghefi, S. (2010). Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. ELsevier. Engler, O., Marioara, C., Aruga, Y., Kozuka, M., & Myhr, O. (2019). Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of Al–Mg–Si alloy AA 6016. Materials Science & Engineering A, 520–529. ESAB. (22 de Febrero de 2020). ESAB. Obtenido de https://www.esabna.com/us/en/education/blog/understanding-the-aluminum-alloy-designation-system.cfm Farshidi, M., Kazeminezhad, M., & b, H. M. (2013). On the natural aging behavior of Aluminum 6061 alloy after severe plastic deformation. Elsevier. Feijoo, I., Cabeza, M., P.Merino, Pena, G., Pérez, M., Cruz, S., & Rey, P. (2019). Estimation of crystallite size and lattice strain in nano-sized TiC particle-reinforced 6005A aluminium alloy from X-ray diffraction line broadening. Powder Technology, 19-28. Fuchs, A. (20 de Mayo de 2020). Graz University of Technology. Obtenido de https://diglib.tugraz.at/download.php?id=5b6d29665ea34&location=browse Gabrian. (22 de Febrero de 2020). GABRIAN. Obtenido de https://www.gabrian.com/es/aluminio-6061-conozca-sus-propiedades-y-usos/ Gandarilla, F. C., Moreno, G. C., & Avilés, M. O. (2005). Aplicaciones de la difracción de rayos-x a materiales policristalinos. Mexico D.F.: Sociedad Mexicana de Cristalografia, A.C. García, L. R. (2 de Mayo de 2020). Introducción al Método Rietveld. Obtenido de http://xml.cie.unam.mx/xml/ms/Doctos/Manual_RietveldML1.pdf Girgsdies, F. (16 de Mayo de 2020). Fritz Haber Institute of the Max Planck Society. Obtenido de http://www.fhi-berlin.mpg.de/acnew/department/pages/teaching/pages/teaching__wintersemester__2013_2014/frank_girgsdies__phase_analysis_and_structure_refinement__131129.pdf GISAXS Community Website. (03 de Mayo de 2020). GISAXS. Obtenido de http://gisaxs.com/index.php/Diffuse_scattering GoodFellow. (22 de Febrero de 2020). GoodFellow. Obtenido de http://www.goodfellow.com/S/Aluminio.html Hammond, C. (2009). The Basics of Crystallography and Diffraction. New York: Oxford University Press Inc. Holder, C. F., & Schaak, R. E. (2019). Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano, 7359−7365. Huis, M. v., Chen, J., Zandbergen, H., & Sluiter, M. (2006). Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al–Mg–Si alloys in the late stages of evolution. Acta Materialia, 54(11), 2945-2955. item24. (22 de Febrero de 2020). item24. Obtenido de https://glossar.item24.com/es/indice-de-glosario/articulo/item//aleacion-forjada-1.html Jacobs, M. H. (6 de Marzo de 2020). CORE-Materials. Obtenido de http://core.materials.ac.uk/repository/eaa/talat/1203.pdf Kahrimanidis, A., Wortberg, D., & Merklein, M. (2014). Influence of a short term heat treatment by conduction and induction on the mechanical properties of AA6014 alloys. Physics Procedia, 56, 1410 – 1418. Kalita, A., & Kalita, M. P. (2017). Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals. ELsevier. Kavalco, P. M., Canale, L. C., & Totten, G. E. (16 de Mayo de 2020). ASM INTERNATIONAL. Obtenido de https://www.asminternational.org/documents/10192/17082024/HTP_Nov-2009__Quenching__00907p25.pdf/eb516c04-7ade-4163-b7ae-a4f2d9f38185 Kawuaguchi, T. (04 de Mayo de 2020). Tomoya Kawaguchi Materials Scientist. Obtenido de https://tkawaguchi.com/debye-waller-factor/ Krishna, N. N., Tejas, R., Sivaprasad, K., & Venkateswarlu, K. (2013). Study on cryorolled Al–Cu alloy using X-ray diffraction line profile analysis and evaluation of strengthening mechanisms. Materials & Design , 52, 785-790. Kuzel, R., & Houska, C. (1995). A NEW XRD METHOD FOR STUDY OF PRECIPITATES APPLIED TO CU-BE ALLOYS. En M. Henryk, & S. Danuta, Applied Crystallography - Proceedings Of The Xvi Conference (págs. 28-32). Cieszyn: World Scientific. Obtenido de https://books.google.com.co/books?id=8NBKDwAAQBAJ&pg=PA28&lpg=PA28&dq=static+diffuse+scattering+and+quasilines+xrd&source=bl&ots=0HyfvIe091&sig=ACfU3U1cNiyHZVkc7gUH5-AZ-rJEnwjQqw&hl=es-419&sa=X&ved=2ahUKEwiJiNPe1ZjpAhUBTd8KHSaRCE4Q6AEwAHoECAoQAQ#v=onepage Kužel, R., He, B., & Houska, C. R. (1997). Characterization of severe matrix distortions during phase separation from the redistribution of diffracted intensities. JOURNAL OF MATERIALS SCIENCE, 2451-2467. Lutterotti, L. (2010). Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research B, 334–340. Lutterotti, L. (5 de Mayo de 2020). International Union of Crystallography. Obtenido de https://www.iucr.org/__data/iucr/powder/Erice2011/day8/d1/maud.pdf Lutterotti, L. (5 de Mayo de 2020). University Of Trento. Obtenido de http://www.ing.unitn.it/~maud/tutorial/InstrumentalBroadening.pdf Lutterotti, L. (6 de Mayo de 2020). Youtube. Obtenido de https://www.youtube.com/watch?v=J5aP_j-3AXI Maisonnette, D., Suery, M., Nelias, D., Chaudet, P., & Epicier, T. (2011). Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy. Materials Science and Engineering A, 528(6), 2718-2724. Marioara, C., Nakamura, J., Matsuda, K., Andersen, S., Holmestad, R., Sato, T., . . . Ikeno, S. (2012). HAADF-STEM study of β′-type precipitates in an over-aged Al–Mg–Si–Ag alloy. Philosophical Magazine, 92(9), 1149–1158. Martínez Villafañe, A., Chacón Nava, J., Gaona Turbicio, C., Almeraya Calderón, F., & González Rodríguez, J. (5 de Junio de 2020). Universidad Nacional Autonoma de México. Obtenido de http://depa.fquim.unam.mx/labcorr/libro/OXIDACION-ALTATEMPERATURA.PDF MatCalc. (06 de Marzo de 2020). MatCalc THE MATERIALS CALCULATOR. Obtenido de http://matcalc.wkmp.tuwien.ac.at/online_help/docs/tutorial/t_09.htm materiales, C. d. (22 de Febrero de 2020). Ciencia de los materiales. Obtenido de http://cienciaymateriales.blogspot.com/2013/04/29-que-entiende-por-solucion-solida.html McCusker, L. B., Dreele, R. B., Cox, D. E., Louër, D., & Scardi, P. (1999). Rietveld refinement guidelines. Journal of Applied Crystallography, 36-50. Meier, M. (22 de 02 de 2005). Measuring crystallite size using x ray digfraccion, the williamson tecnique draft. Obtenido de file:///C:/Users/INTEL/Desktop/XRD-CSize2.pdf Monsalve, M., López, E., Vargas, F., Gonzáles, A., & Benavides, V. (2009). INFLUENCIA DEL SUSTRATO, ESPESOR DE LA CAPA Y TÉCNICA DE DEPÓSITO EN LA TEXTURA CRISTALOGRAFICA DE PELICULAS DELGADAS DE TiN. Revista Latinoamericana de Metalurgia y Materiales, 115-127. Mote, V., Purushotham, Y., & Dole, B. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics. Mustapa, M. S., Latif, N. A., Joharudin, N. F., Mahzan, S., Masirin, M. I., & Hamid, N. A. (2018). The Effect of Heat Treatment on Compression Strength of Recycled AA6061 Aluminium Chips. Materials Science Forum, 934, 124-128. Naronikar, A. H., N, A. J., Simha, A., & Saikiran, B. (2018). Optimizing the Heat Treatment Parameters of Al-6061 Required for Better Formability. Materials Today : Proceedings, 5(11), 24240–24247. Nath, D., Singh, F., & Das, R. (2019). X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. ELsevier. Nave, M. O. (19 de 02 de 2020). ley de bragg . Obtenido de http://hyperphysics.phy-astr.gsu.edu/hbasees/quantum/bragg.html Novelo-Peralta, O., González, G., & Lara-Rodríguez, G. (2008). Characterization of precipitation in Al–Mg–Cu alloys by X-ray diffraction peak broadening analysis. MATERIALS CHARACTERIZATION, 773–780. Ozturk, F., Sisman, A., Toros, S., Kilic, S., & Picu, R. (2009). Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Materials and Design, 972–975. Poznak, A., Thole, V., & Sanders, P. (2018). The Natural Aging Effect on Hardenability in Al-Mg-Si: A Complex Interaction between Composition and Heat Treatment Parameters. metals. Ravi, C., & Wolverton, C. (2004). First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Materialia, 52(14), 4213-4227. Rezaei, M. R., Toroghinejad, M. R., & Ashrafizadeh, F. (2011). Production of nano-grained structure in 6061 aluminum alloy strip by accumulative roll bonding. Materials Science and Engineering A, 529, 442-446. Shackelford, J. F. (2005). Introducción a la ciencia de materiales ingenieros. Madrid: PEARSON EDUCACIÓN, S.A. Shih, T.-S., & Liu, Z.-B. (2006). Thermally-Formed Oxide on Aluminum and Magnesium. Materials Transactions, 1347-1353. Sitdikov, V., Murashkin, M. Y., & Valiev, R. (2017). New X-Ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys. Journal of Materials Engineering and Performance, 4732–4737. Sitepu, H. (2009). Texture and structural refinement using neutron diffraction data from molybdite (MoO3) and calcite (CaCO3) powders and a Ni-rich Ni50.7 Ti49.30 alloy. Powder Diffraction, 315-326. Sitepu, H., O’Connor, B. H., & Li, D. (2004). Comparative evaluation of the March and generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite and calcite powders. Journal of Applied Crystallography. Sitepu, H., Prask, H., & Vaudin, M. (2001). TEXTURE CHARACTERIZATION IN X-RAY AND NEUTRON POWDER DIFFRACTION DATA USING THE GENERALIZED SPHERICAL-HARMONIC. Advances in X-ray Analysis. Sivakami, R., Dhanuskodi, S., & Karvembu, R. (2015). Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods. ELsevier. Smith, W. F. (1998). FUNDAMENTOS DE LA CIENCIA E INGENIERÍA DE MATERIALES. Madrid: McGraw Hill. Speakman, S. A. (04 de Mayo de 2020). Prism Web Server. Obtenido de http://prism.mit.edu/xray/introduction%20to%20xrpd%20data%20analysis.pdf Speakman, S. A. (6 de Mayo de 2020). Prism Web Server. Obtenido de http://prism.mit.edu/xray/Fundamentals%20of%20Rietveld%20Refinement%20XRD%20Simulation%202011.pdf Suryanarayana, C., & Norton, M. G. (1998). X-Ray Diffraction A Practical Approach. New York: Plenum Publishing Corporation. Toby, B. H. (5 de Mayo de 2020). CambridgeCore. Obtenido de https://www.cambridge.org/core/journals/powder-diffraction/article/r-factors-in-rietveld-analysis-how-good-is-good-enough/17439A1F889B689C495549A234D53682/core-reader TOTTEN, G. E., WEBSTER, G. M., & BATES, C. E. (2003). Quenching. En G. E. Totten, & D. S. MacKenzie, Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes (págs. 971-1063). CRC Press. Università Di Trento. (04 de Mayo de 2020). Obtenido de http://www.ing.unitn.it/~maud/tutorial/QPA.pdf WANG, S., HUANG, Y., & ZHAO, L. (2018). Effects of different aging treatments on microstructures and mechanical properties of Al-Cu-Li alloy joints welded by electron beam welding. Chinese Journal of Aeronautics, 363–369. Waseda, Y., Matsubara, E., & Kozo, S. (2011). X- Ray Diffraction Crystallography Introduction, Examples and Solved Problems. New York: Springer. Wikipedia. (04 de Mayo de 2020). Wikipedia. Obtenido de https://es.wikipedia.org/wiki/Factor_de_Debye-Waller Wikipedia. (9 de Junio de 2020). Wikipedia. Obtenido de https://en.wikipedia.org/wiki/Siegbahn_notation Wikipedia. (22 de Febrero de 2020). Wikipedia. Obtenido de https://es.wikipedia.org/wiki/Alclad Young, R. (1993). The Rietveld Method. New York: Oxford University Press Inc. Zeren, M. (2007). The effect of heat-treatment on aluminum-based piston alloys. Materials and Design, 28(9), 2511-2517. Zhang, J., Fan, Z., Wang, Y., & Zhou, B. (2001). Equilibrium pseudobinary Al–Mg2Si phase diagram. Taylos & Francis Online. ZHENG, Y., LUO, B., BAI, Z., & HE, C. (2019). Evolution of the Initial Precipitation and Strengthening Mechanism of Al-Mg-Si alloys. The Minerals, Metals & Materials Society, 71(12), 4737-4745. instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ spa Acceso abierto Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf application/pdf Universidad Antonio Nariño Ingeniería Mecánica Facultad de Ingeniería Mecánica, Electrónica y Biomédica Bogotá - Sur
spellingShingle Aluminio 6061
Propiedades mecánicas
Refinamiento Rietveld
Tratamientos térmicos
Método de Williamson-Hall
Difracción de rayos X
6061 aluminium
Mechanical properties
Rietveld refinement
Heat treatments
Williamson-Hall method
X ray diffraction
Bonilla Canizales, Andrés Felipe
Gordillo Medina, Lainer Fresned
Efecto del tiempo de envejecido en la estructura cristalina y las propiedades mecánicas del aluminio 6061
title Efecto del tiempo de envejecido en la estructura cristalina y las propiedades mecánicas del aluminio 6061
title_full Efecto del tiempo de envejecido en la estructura cristalina y las propiedades mecánicas del aluminio 6061
title_fullStr Efecto del tiempo de envejecido en la estructura cristalina y las propiedades mecánicas del aluminio 6061
title_full_unstemmed Efecto del tiempo de envejecido en la estructura cristalina y las propiedades mecánicas del aluminio 6061
title_short Efecto del tiempo de envejecido en la estructura cristalina y las propiedades mecánicas del aluminio 6061
title_sort efecto del tiempo de envejecido en la estructura cristalina y las propiedades mecanicas del aluminio 6061
topic Aluminio 6061
Propiedades mecánicas
Refinamiento Rietveld
Tratamientos térmicos
Método de Williamson-Hall
Difracción de rayos X
6061 aluminium
Mechanical properties
Rietveld refinement
Heat treatments
Williamson-Hall method
X ray diffraction
url http://repositorio.uan.edu.co/handle/123456789/2211
work_keys_str_mv AT bonillacanizalesandresfelipe efectodeltiempodeenvejecidoenlaestructuracristalinaylaspropiedadesmecanicasdelaluminio6061
AT gordillomedinalainerfresned efectodeltiempodeenvejecidoenlaestructuracristalinaylaspropiedadesmecanicasdelaluminio6061
  • Editorial
  • CRAI
  • Repositorio
  • Libros