Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)
Propia
Guardado en:
Autores principales: | , |
---|---|
Otros Autores: | |
Formato: | Trabajo de grado (Pregrado y/o Especialización) |
Lenguaje: | spa |
Publicado: |
Universidad Antonio Nariño
2021
|
Materias: | |
Acceso en línea: | http://repositorio.uan.edu.co/handle/123456789/2134 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
_version_ | 1812647328279953408 |
---|---|
author | Meneses Real, Hernán David Patarroyo Querales, Laura Alejandra |
author2 | Osorio Bustamante, Edison |
author_facet | Osorio Bustamante, Edison Meneses Real, Hernán David Patarroyo Querales, Laura Alejandra |
author_sort | Meneses Real, Hernán David |
collection | DSpace |
description | Propia |
format | Trabajo de grado (Pregrado y/o Especialización) |
id | repositorio.uan.edu.co-123456789-2134 |
institution | Repositorio Digital UAN |
language | spa |
publishDate | 2021 |
publisher | Universidad Antonio Nariño |
record_format | dspace |
spelling | repositorio.uan.edu.co-123456789-21342024-10-09T22:49:24Z Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva) Meneses Real, Hernán David Patarroyo Querales, Laura Alejandra Osorio Bustamante, Edison Convección Conducción Radiación Temperatura Transferencia de calor Modelación numérica Puentes Convection Conduction Radiation Temperature Heat transfer Numerical modeling Bridge Propia Currently cities such as Bogotá and Neiva have had a vehicular growth due to population and industrial development, where the infrastructure of the bridges daily supports loads such as the weight of cars, buses, trucks, dump trucks, etc., in addition to natural phenomena such as heat And the water. Taking into account that heat is transferred through convection, conduction and radiation, a photographic record was made with the help of the camera ends Flir One Pro and a numerical balance with the equations of the heat transfer methods, to finally compare the upper and lower temperatures present in the plate of the bridges made by both methods, understanding the affectations suffered by the structure due to heat, wind and other factors present in the environment, these final results are compared with what is established in the standard CCP-14 to verify if the conditions presented by the bridges comply with the provisions of the standard. Actualmente las ciudades como Bogotá y Neiva han tenido un crecimiento vehicular debido al desarrollo poblacional e industrial, donde la infraestructura de los puentes soporta diariamente cargas como el peso de los automóviles, buses, camiones, volquetas, etc., adicionalmente fenómenos naturales como el calor y el agua. Teniendo en cuenta que el calor se transfiere por medio de la convección, conducción y radiación, se realizó un registro fotográfico con ayuda de la cámara termina Flir One Pro y un balance numérico con las ecuaciones de los métodos de transferencia de calor, para así finalmente comparar las temperaturas superiores e inferiores presentes en la placa de los puentes realizados por ambos métodos, comprendiendo las afectaciones que sufre la estructura por el calor, el viento y otros factores presentes en el ambiente, estos resultados finales se comparan con lo establecido en la norma CCP-14 para verificar si las condiciones que presentan los puentes cumplen con lo establecido en la norma. Ingeniero(a) Civil Pregrado Presencial 2021-03-01T21:36:46Z 2021-03-01T21:36:46Z 2020-07-05 Trabajo de grado (Pregrado y/o Especialización) info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_7a1f http://purl.org/coar/version/c_970fb48d4fbd8a85 http://repositorio.uan.edu.co/handle/123456789/2134 Apuntes de Geotecnia con Énfasis en Laderas: El Diseño Racional en la Ingeniería Geotécnica (I). (2012). http://geotecnia-sor.blogspot.com/2012/11/el-diseno-racional-en-la-ingenieria.html Atlas Interactivo - Radiación IDEAM. (2019). http://atlas.ideam.gov.co/visorAtlasRadiacion.html Bayane, I., Mankar, A., Brühwiler, E., & Sørensen, J. D. (2019). Quantification of traffic and temperature effects on the fatigue safety of a reinforced-concrete bridge deck based on monitoring data. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109357 Bustamante, E. O. (2018). Avances en la regionalización de las cargas térmicas para el diseño de puentes en Colombia. Castaño, J. C. (1999). Universidad Nacional de Colombia: Repositorio institucional UN. http://www.bdigital.unal.edu.co/23972/ CCP-14, A. C. de I. S. (2014). SECCION 3: Cargas y Factores de Carga. Norma Colombiana de Diseño de Puentes, CCP 14, 140. Cengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor y masa : fundamentos y aplicaciones. McGraw-Hill Interamericana. http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3214430 Cheng, W., Wenchao, L., & Chen, Z. (2020). Calculation and Analysis of Box Girder Temperature Effect of Large Cantilever Bridge under the Solar Radiation. IOP Conference Series: Materials Science and Engineering, 780(2). https://doi.org/10.1088/1757-899X/780/2/022010 Childs, D. (2020). Bridge Design| Temperature Effects in Bridge Decks. http://bridgedesign.org.uk/tutorial/temperature-effects.php Colombia Weather History | Weather Underground. (2020). https://www.wunderground.com/history/monthly/co/neiva/SKNV/date/2019-12 Eddyhrbs. (2010). INGENIERIA CIVIL: Puentes Cantiléver. https://www.ingenierocivilinfo.com/2011/01/puentes-cantilever.html Feng, H., Liu, X., Wu, B., Wu, D., Zhang, X., & He, C. (2019). Temperature-insensitive cable tension monitoring during the construction of a cable-stayed bridge with a custom-developed pulse elasto-magnetic instrument. Structural Health Monitoring, 18(5–6), 1982–1994. https://doi.org/10.1177/1475921718814733 Giovanni. (2020). https://giovanni.gsfc.nasa.gov/giovanni/ Google Earth. (2020). https://earth.google.com/web/@0,0,0a,22251752.77375655d,35y,0h,0t,0r Grishyn, I. V., Ivanov, G. P., & Kayumov, R. A. (2020). Durability of bridge asphaltic concrete pavements under temperature loads. IOP Conference Series: Materials Science and Engineering, 786(1). https://doi.org/10.1088/1757-899X/786/1/012032 Guard, P. (2009). File:Gateway Bridge aerial3.JPG - Wikipedia. https://en.wikipedia.org/wiki/File:Gateway_Bridge_aerial3.JPG Hossain, T., Segura, S., & Okeil, A. M. (2020). Structural effects of temperature gradient on a continuous prestressed concrete girder bridge: analysis and field measurements. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2020.1713167 Huang, W., Guo, W., & Wei, Y. (2019). Thermal Effect on Rheological Properties of Epoxy Asphalt Mixture and Stress Prediction for Bridge Deck Paving. Journal of Materials in Civil Engineering, 31(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002861 Infercal - Ingenieros Constructores. (2011). http://www.infercal.com/portal/ Kennedybrücke - Bonn, NRW, Germany Image. (2017). https://www.waymarking.com/gallery/image.aspx?f=1&guid=1b009955-1e51-45ad-9606-65038213ca47&gid=3 Kong, L. Y., Huang, L. H., Dai, L., & Yu, M. (2020). Coupling effect of temperature and roughness on the pull-out strength of concrete bridge deck inter-layer. Chang’an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang’an University (Natural Science Edition), 40(2), 21–29. https://doi.org/10.19721/j.cnki.1671-8879.2020.02.003 Kuryłowicz-Cudowska, A., Wilde, K., & Chróścielewski, J. (2020). Prediction of cast-in-place concrete strength of the extradosed bridge deck based on temperature monitoring and numerical simulations. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119224 Lee, J., Loh, K. J., Choi, H. S., & An, H. (2019). Effect of Structural Change on Temperature Behavior of a Long-Span Suspension Bridge Pylon. International Journal of Steel Structures, 19(6), 2073–2089. https://doi.org/10.1007/s13296-019-00279-3 Lei, X., Jiang, H., Wang, J., Zhang, D., & Jiang, R. (2020). Pavement Rut Depth Prediction for a Three-Span Suspension Steel Box Girder Bridge Based on Two-Year Temperature Monitoring Data. Journal of Transportation Engineering Part B: Pavements, 146(3). https://doi.org/10.1061/JPEODX.0000177 Li, J., Hu, R., Yang, J., & Liu, Y. (2019). Effect of temperature gradient on competitive growth behavior of Si and YSi2 in a Si–Y eutectic alloy prepared by Bridgeman method. Ceramics International, 45(14), 16776–16783. https://doi.org/10.1016/j.ceramint.2019.05.213 Lin, J., Briseghella, B., Xue, J., Tabatabai, H., Huang, F., & Chen, B. (2020). Temperature Monitoring and Response of Deck-Extension Side-by-Side Box Girder Bridges. Journal of Performance of Constructed Facilities, 34(2). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001399 Liu, J., Liu, Y., Zhang, C., Zhao, Q., Lyu, Y., & Jiang, L. (2020). Temperature action and effect of concrete-filled steel tubular bridges: A review. In Journal of Traffic and Transportation Engineering (English Edition) (Vol. 7, Issue 2, pp. 174–191). Periodical Offices of Chang- an University. https://doi.org/10.1016/j.jtte.2020.03.001 Liu, Y. J., & Liu, J. (2020). Review on temperature action and effect of steel-concrete composite girder bridge. In Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering (Vol. 20, Issue 1, pp. 42–59). Chang’an University. https://doi.org/10.19818/j.cnki.1671-1637.2020.01.003 Monleón Cremades, S. (2017). Diseño estructural de puentes. Universidad Politécnica de Valencia. Puente Britannia - Puente | RouteYou. (2006). https://www.routeyou.com/es-gb/location/view/48035182/puente-britannia Puente de Forth - EcuRed. (2017). https://www.ecured.cu/Puente_de_Forth Puente Verrazano-Narrows - Megaconstrucciones, Extreme Engineering. (2012). https://megaconstrucciones.net/?construccion=puente-verrazano-narrows Repositorio Institucional IDU: Búsquedas. (2007). https://webidu.idu.gov.co/jspui/simple-search?query=Puente+avenida+de++las+amercias+con+boyaca+ Salazar, P. (2012). CAPÍTULO IV APLICACIÓN DE LAS NORMAS AASHTO LRFD AL DISEÑO ESTRUCTURAL DE PUENTES 4.1.-INTRODUCCIÓN AL AASHTO LRFD. Sheng, X. W., Zheng, W. Q., Zhu, Z. H., Yang, Y., & Li, S. (2019). Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge. Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 19(4), 24–34. Shi, T., Zheng, J., Deng, N., Chen, Z., Guo, X., & Wang, S. (2020). Temperature Load Parameters and Thermal Effects of a Long-Span Concrete-Filled Steel Tube Arch Bridge in Tibet. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/9710613 Somenson, H. M. (2017). Estudio y proyecto de puentes de hormigón armado. Díaz de Santos. Stahlwerk Annahutte Max Aicher GmbH & Co.KG. (n.d.). Puente Gateway, Brisbane, Australia. Retrieved February 10, 2020, from https://www.annahuette.com/es/home/proyectos-de-referencia/sistemas-sas-proyectos/puente-gateway Sumargo, & Harahap, A. H. S. (2019). Loading Test and Temperature Effect on Steel Arch Bridge. IOP Conference Series: Materials Science and Engineering, 650(1). https://doi.org/10.1088/1757-899X/650/1/012035 VOSviewer. (2020). https://universoabierto.org/2020/02/18/vosviewer-es-una-herramienta-de-software-para-construir-y-visualizar-redes-bibliometricas/ Wang, G. X., & Ding, Y. L. (2019). Long-term monitoring of temperature effect on horizontal rotation angle at beam ends of a railway steel truss bridge. Journal of Bridge Engineering, 24(10). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001484 Wang, J. F., Zhang, J. T., Xu, R. Q., & Yang, Z. X. (2019). Evaluation of Thermal Effects on Cable Forces of a Long-Span Prestressed Concrete Cable-Stayed Bridge. Journal of Performance of Constructed Facilities, 33(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001348 Wang, J. feng, Zhang, J. tao, Yang, Z. xuan, & Xu, R. qiao. (2020). Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges. Journal of Zhejiang University: Science A, 21(4), 255–267. https://doi.org/10.1631/jzus.A1900310 Wayne, D. J. (1999). The male analyst on the maternal erotic playground. In Gender & Psychoanalysis (Vol. 4, Issue 1). http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc3&NEWS=N&AN=2000-03615-002 Xia, Q., Xia, Y., Wan, H. P., Zhang, J., & Ren, W. X. (2020). Condition analysis of expansion joints of a long-span suspension bridge through metamodel-based model updating considering thermal effect. Structural Control and Health Monitoring, 27(5). https://doi.org/10.1002/stc.2521 Xu, X., Ren, Y., Huang, Q., Zhao, D. Y., Tong, Z. J., & Chang, W. J. (2020). Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies. Journal of Civil Structural Health Monitoring. https://doi.org/10.1007/s13349-020-00402-7 Yang, J. N., He, X. J., Yang, J. H. L., Wang, Y. D., & Zhang, Z. (2020). Analysis of Temperature Effect on an S Cable-Stayed Bridge with Steel Box Girder During Asphalt Concrete Placement. Bridge Construction, 50(2), 37–42. Yang, K., Ding, Y., Sun, P., Zhao, H., & Geng, F. (2019). Modeling of Temperature Time-Lag Effect for Concrete Box-Girder Bridges. Applied Sciences, 9(16), 3255. https://doi.org/10.3390/app9163255 Yepes, V. (2017). Puente arco. https://victoryepes.blogs.upv.es/tag/puente-arco/ Zhang, W. M., Tian, G. M., & Liu, Z. (2019). Analytical Study of Uniform Thermal Effects on Cable Configuration of a Suspension Bridge during Construction. Journal of Bridge Engineering, 24(11). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001493 Zhang, W. M., Yang, C. Y., Tian, G. M., & Liu, Z. (2020). Analytical Assessment of Main Cable Shape for Three-Pylon Suspension Bridge with Unequal Main-Span Lengths: Thermal Effect Consideration. Journal of Bridge Engineering, 25(1). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001522 Zhou, L., Zhang, G., Yu, Z., Zhao, L., Wei, T., & Yang, L. (2020). Model Experiments of Ballastless Track-bridge Structure under Cyclic Temperature Load. Tiedao Xuebao/Journal of the China Railway Society, 42(1), 82–88. https://doi.org/10.3969/j.issn.1001-8360.2020.01.012 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ spa Acceso abierto Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) https://creativecommons.org/licenses/by-nd/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf application/pdf Universidad Antonio Nariño Ingeniería Civil Facultad de Ingeniería Civil Bogotá - Sur |
spellingShingle | Convección Conducción Radiación Temperatura Transferencia de calor Modelación numérica Puentes Convection Conduction Radiation Temperature Heat transfer Numerical modeling Bridge Meneses Real, Hernán David Patarroyo Querales, Laura Alejandra Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva) |
title | Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva) |
title_full | Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva) |
title_fullStr | Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva) |
title_full_unstemmed | Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva) |
title_short | Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva) |
title_sort | temperatura superficial in situ en el puente vehicular de la avenida americas con avenida boyaca bogota y en el puente intercambiador vial el tizon neiva |
topic | Convección Conducción Radiación Temperatura Transferencia de calor Modelación numérica Puentes Convection Conduction Radiation Temperature Heat transfer Numerical modeling Bridge |
url | http://repositorio.uan.edu.co/handle/123456789/2134 |
work_keys_str_mv | AT menesesrealhernandavid temperaturasuperficialinsituenelpuentevehiculardelaavenidaamericasconavenidaboyacabogotayenelpuenteintercambiadorvialeltizonneiva AT patarroyoqueraleslauraalejandra temperaturasuperficialinsituenelpuentevehiculardelaavenidaamericasconavenidaboyacabogotayenelpuenteintercambiadorvialeltizonneiva |