Lagrange Interpolation Formula and Arithmetic Progressions of Higher Order

Lagrange Interpolation Formula (LIF) has an important role in problems about unknown polynomials with known values in only some points. However this is not the only critic role of LIF. In this paper we shed light on some less known aspects of LIF. We use it to prove identities, and we show its relat...

Full description

Saved in:
Bibliographic Details
Main Authors: Magalhaes, Cicero, Safaei, Navid
Format: info:eu-repo/semantics/article
Language:por
Published: Universidad Antonio Nariño 2023
Subjects:
Online Access:https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1480
https://repositorio.uan.edu.co/handle/123456789/11563
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1812671670684483584
author Magalhaes, Cicero
Safaei, Navid
author_facet Magalhaes, Cicero
Safaei, Navid
author_sort Magalhaes, Cicero
collection DSpace
description Lagrange Interpolation Formula (LIF) has an important role in problems about unknown polynomials with known values in only some points. However this is not the only critic role of LIF. In this paper we shed light on some less known aspects of LIF. We use it to prove identities, and we show its relation with derivation and its applications to arithmetic progressions of higher order, introducing the finite dierences operator which opens a fan of possibilities for students preparing for mathematical competitions.
format info:eu-repo/semantics/article
id repositorio.uan.edu.co-123456789-11563
institution Repositorio Digital UAN
language por
publishDate 2023
publisher Universidad Antonio Nariño
record_format dspace
spelling repositorio.uan.edu.co-123456789-115632024-10-11T20:03:47Z Lagrange Interpolation Formula and Arithmetic Progressions of Higher Order Fórmula da interpolación de Lagrange y progresiones aritméticas de orden superior Formula da interpolação de Lagrange e progressões aritméticas de ordem superior Magalhaes, Cicero Safaei, Navid Interpolation, Lagrange, arithmetic progressionsp, mathematical competitions. Interpolação, Lagrange, progressões aritméticas, competições matemáticas Lagrange Interpolation Formula (LIF) has an important role in problems about unknown polynomials with known values in only some points. However this is not the only critic role of LIF. In this paper we shed light on some less known aspects of LIF. We use it to prove identities, and we show its relation with derivation and its applications to arithmetic progressions of higher order, introducing the finite dierences operator which opens a fan of possibilities for students preparing for mathematical competitions. A Fórmula de Interpolação de Lagrange (FIL) tem um papel imenso em investigar problemas sobre polinômios desconhecidos com apenas valores conhecidos em alguns pontos. No entanto, este não é o único papel crítico da FIL. Neste artigo, lançamos mais luz sobre alguns aspectos menos conhecidos da FIL. Devemos adotá-la para provar identidades, sua relação com a derivação e, a fortiori, suas aplicações em progressões aritméticas de ordem superior, introduzindo o operador de diferenças finitas que, por si só, abrirá um novo leque para os competidores que estão se preparando para competições matemáticas. 2023-09-25 2024-10-11T20:03:47Z 2024-10-11T20:03:47Z info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo revisado por pares https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1480 10.54104/em.v2i1.1480 https://repositorio.uan.edu.co/handle/123456789/11563 por https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1480/1145 Derechos de autor 2022 ESPACIO MATEMÁTICO application/pdf Universidad Antonio Nariño ESPACIO MATEMÁTICO Journal; Vol. 2 No. 1 (2021); 58-67 Espacio Matemático; Vol. 2 Núm. 1 (2021); 58-67 ESPACIO MATEMÁTICO; Vol. 2 No 1 (2021); 58-67 Revista Espacio Matemático; v. 2 n. 1 (2021); 58-67 2711-1792 10.54104/em.v2i1
spellingShingle Interpolation, Lagrange, arithmetic progressionsp, mathematical competitions.
Interpolação, Lagrange, progressões aritméticas, competições matemáticas
Magalhaes, Cicero
Safaei, Navid
Lagrange Interpolation Formula and Arithmetic Progressions of Higher Order
title Lagrange Interpolation Formula and Arithmetic Progressions of Higher Order
title_full Lagrange Interpolation Formula and Arithmetic Progressions of Higher Order
title_fullStr Lagrange Interpolation Formula and Arithmetic Progressions of Higher Order
title_full_unstemmed Lagrange Interpolation Formula and Arithmetic Progressions of Higher Order
title_short Lagrange Interpolation Formula and Arithmetic Progressions of Higher Order
title_sort lagrange interpolation formula and arithmetic progressions of higher order
topic Interpolation, Lagrange, arithmetic progressionsp, mathematical competitions.
Interpolação, Lagrange, progressões aritméticas, competições matemáticas
url https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1480
https://repositorio.uan.edu.co/handle/123456789/11563
work_keys_str_mv AT magalhaescicero lagrangeinterpolationformulaandarithmeticprogressionsofhigherorder
AT safaeinavid lagrangeinterpolationformulaandarithmeticprogressionsofhigherorder
AT magalhaescicero formuladainterpolaciondelagrangeyprogresionesaritmeticasdeordensuperior
AT safaeinavid formuladainterpolaciondelagrangeyprogresionesaritmeticasdeordensuperior
AT magalhaescicero formuladainterpolacaodelagrangeeprogressoesaritmeticasdeordemsuperior
AT safaeinavid formuladainterpolacaodelagrangeeprogressoesaritmeticasdeordemsuperior
  • Editorial
  • CRAI
  • Repositorio
  • Libros