A comparison of two algorithms for solving the ideal membership problem for Z[x]

In this work, we present two algorithms for solving the ideal membershipproblem for Z[x]. The rst algorithm was developed by H.Simmons in [5]. The second algorithm is based on the results presentedby G. Szekeres in [6] about minimal bases for the ideals of apolynomial ring over an integral domain.

Saved in:
Bibliographic Details
Main Authors: Cáceres Duque, Luis F., López Gallo, Silvia M.
Format: info:eu-repo/semantics/article
Language:spa
Published: Universidad Antonio Nariño 2023
Subjects:
Online Access:https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1468
https://repositorio.uan.edu.co/handle/123456789/11555
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1812671668868349952
author Cáceres Duque, Luis F.
López Gallo, Silvia M.
author_facet Cáceres Duque, Luis F.
López Gallo, Silvia M.
author_sort Cáceres Duque, Luis F.
collection DSpace
description In this work, we present two algorithms for solving the ideal membershipproblem for Z[x]. The rst algorithm was developed by H.Simmons in [5]. The second algorithm is based on the results presentedby G. Szekeres in [6] about minimal bases for the ideals of apolynomial ring over an integral domain.
format info:eu-repo/semantics/article
id repositorio.uan.edu.co-123456789-11555
institution Repositorio Digital UAN
language spa
publishDate 2023
publisher Universidad Antonio Nariño
record_format dspace
spelling repositorio.uan.edu.co-123456789-115552024-10-11T20:03:41Z A comparison of two algorithms for solving the ideal membership problem for Z[x] Comparación de dos algoritmos para resolver el problema de pertenencia a ideales de Z[x] Cáceres Duque, Luis F. López Gallo, Silvia M. problema de pertenencia, ideales, polinomios con coecientes enteros. membership problem, ideals, polynomials over integers. In this work, we present two algorithms for solving the ideal membershipproblem for Z[x]. The rst algorithm was developed by H.Simmons in [5]. The second algorithm is based on the results presentedby G. Szekeres in [6] about minimal bases for the ideals of apolynomial ring over an integral domain. En este trabajo, presentamos dos algoritmos para resolver el problemade pertenencia a ideales de Z[x]. El primer algoritmo fue desarrolladopor H. Simmons en [5]. El segundo algoritmo se basa en losresultados presentados por G. Szekeres en [6] acerca de bases mínimaspara los ideales de un anillo de polinomios sobre un dominio entero. 2023-09-28 2024-10-11T20:03:41Z 2024-10-11T20:03:41Z info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo revisado por pares https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1468 10.54104/em.v2i2.1468 https://repositorio.uan.edu.co/handle/123456789/11555 spa https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1468/1139 Derechos de autor 2022 ESPACIO MATEMÁTICO application/pdf Universidad Antonio Nariño ESPACIO MATEMÁTICO Journal; Vol. 2 No. 2 (2021); 144-151 Espacio Matemático; Vol. 2 Núm. 2 (2021); 144-151 ESPACIO MATEMÁTICO; Vol. 2 No 2 (2021); 144-151 Revista Espacio Matemático; v. 2 n. 2 (2021); 144-151 2711-1792 10.54104/em.v2i2
spellingShingle problema de pertenencia, ideales, polinomios con coecientes enteros.
membership problem, ideals, polynomials over integers.
Cáceres Duque, Luis F.
López Gallo, Silvia M.
A comparison of two algorithms for solving the ideal membership problem for Z[x]
title A comparison of two algorithms for solving the ideal membership problem for Z[x]
title_full A comparison of two algorithms for solving the ideal membership problem for Z[x]
title_fullStr A comparison of two algorithms for solving the ideal membership problem for Z[x]
title_full_unstemmed A comparison of two algorithms for solving the ideal membership problem for Z[x]
title_short A comparison of two algorithms for solving the ideal membership problem for Z[x]
title_sort comparison of two algorithms for solving the ideal membership problem for z x
topic problema de pertenencia, ideales, polinomios con coecientes enteros.
membership problem, ideals, polynomials over integers.
url https://revistas.uan.edu.co/index.php/espaciomatematico/article/view/1468
https://repositorio.uan.edu.co/handle/123456789/11555
work_keys_str_mv AT caceresduqueluisf acomparisonoftwoalgorithmsforsolvingtheidealmembershipproblemforzx
AT lopezgallosilviam acomparisonoftwoalgorithmsforsolvingtheidealmembershipproblemforzx
AT caceresduqueluisf comparaciondedosalgoritmospararesolverelproblemadepertenenciaaidealesdezx
AT lopezgallosilviam comparaciondedosalgoritmospararesolverelproblemadepertenenciaaidealesdezx
AT caceresduqueluisf comparisonoftwoalgorithmsforsolvingtheidealmembershipproblemforzx
AT lopezgallosilviam comparisonoftwoalgorithmsforsolvingtheidealmembershipproblemforzx
  • Editorial
  • CRAI
  • Repositorio
  • Libros